《反三角函数及最简三角方程.doc》由会员分享,可在线阅读,更多相关《反三角函数及最简三角方程.doc(20页珍藏版)》请在三一办公上搜索。
1、精选优质文档-倾情为你奉上反三角函数及最简三角方程一、知识回顾:1、反三角函数:概念:把正弦函数,时的反函数,成为反正弦函数,记作. ,不存在反函数.含义:表示一个角;角;.反余弦、反正切函数同理,性质如下表.名称函数式定义域值域奇偶性单调性反正弦函数增奇函数增函数反余弦函数减非奇非偶减函数反正切函数R 增奇函数增函数反余切函数R 减非奇非偶减函数 其中: (1) 符号arcsinx可以理解为,上的一个角(弧度),也可以理解为区间,上的一个实数;同样符号arccosx可以理解为0,上的一个角(弧度),也可以理解为区间0,上的一个实数; (2) yarcsinx等价于sinyx, y,, yar
2、ccosx等价于cosyx, x0, , 这两个等价关系是解反三角函数问题的主要依据; (3)恒等式sin(arcsinx)x, x1, 1 , cos(arccosx)x, x1, 1, tan(arctanx)=x,xRarcsin(sinx)x, x,, arccos(cosx)x, x0, ,arctan(tanx)=x, x(,)的运用的条件; (4) 恒等式arcsinxarccosx, arctanxarccotx的应用。2、最简单的三角方程方程方程的解集其中:(1)含有未知数的三角函数的方程叫做三角方程。解三角方程就是确定三角方程是否有解,如果有解,求出三角方程的解集; (2)
3、解最简单的三角方程是解简单的三角方程的基础,要在理解三角方程的基础上,熟练地写出最简单的三角方程的解; (3)要熟悉同名三角函数相等时角度之间的关系在解三角方程中的作用; 如:若,则;若,则; 若,则;若,则; (4)会用数形结合的思想和函数思想进行含有参数的三角方程的解的情况和讨论。二、典型例题:例1. 例2. 例3. 例4.使成立的x的取值范围是( ) 例5. 例6. 求值:(1) (2) 分析:问题的关键是能认清三角式的含义及运算次序,利用换元思想转化为三角求值。 例7.画出下列函数的图像(1) (2)例8.已知求(用反三角函数表示) 分析:可求的某一三角函数值,再根据的范围,利用反三角
4、函数表示角。例9.已知函数(1)求函数的定义域、值域和单调区间;(2)解不等式:例10.写出下列三角方程的解集(1); (2); (3)例11.求方程在上的解集.例12.解方程例13.解方程例14.解方程:(1) (2)思考:引入辅助角,化为最简单的三角方程例15.解方程例16.解方程:例17.已知方程在区间上有且只有两个不同的解,求实数a的取值范围。 说明对于两个相等的同名三角函数所组成的三角方程,可直接利用以下关系得到方程的解(1),则或;(2),则或;(3),则三、同步练习:反三角函数1.的值是 ( )A. B. C. D.2.下列关系式中正确的是 ( )A. B. C. D.3.函数的
5、定义域是 ( )A. B. C. D.4.在上和函数相同的函数是 ( )A. B. C. D.5.函数的反函数是 .6.求在上的反函数.7.比较与的大小. 8.研究函数的定义域、值域及单调性.9.计算:10.求下列函数的定义域和值域: (1) yarccos; (2) yarcsin(x2x); (3) yarccot(2x1), 11.求函数y(arccosx)23arccosx的最值及相应的x的值。 简单的三角方程1.解下列方程.(1) (2) 2.方程sin2xsinx在区间(0, 2)内的解的个数是 .3.(1) 方程tan3xtgx的解集是 . (2) 方程sinxcosx在区间0,
6、 4上的所有的解的和是 .4.解方程参考答案:典型例题:例1. 分析与解: 例2. 分析与解: 例3. 分析与解: 例4. 分析与解: 该题研究不等关系,故需利用函数的单调性进行转化,又因为求x的取值范围,故需把x从反三角函数式中分离出来,为此只需对arcsinx,arccosx同时取某一三角函数即可,不妨选用正弦函数。 例5. 分析与解:这是三角函数的反三角运算,其方法是把角化到相应的反三角函数的值域内。 例6. 解: 例7. (1)函数是以为周期的周期函数当时, 当时, 其图像是折线,如图所示:(2) 其图像为单位圆的上半圆(包括端点)如图所示:例8. 解:又 又 又 从而讲评:由题设,得
7、由计算,但是确定的角,因而 的值也是唯一确定的。所以必须确定所在的象限,在以上的解法中,由的范围,再根据的值,进一步得到从而确定,故得出正确的答案:例9. 解:(1)由得 又的定义域为,值域为又时,单调递减,单调递减,从而递增的单调递增区间是,同理的单调递减区间是(2)即 解不等式组得 不等式的解集为例10. 解集x|x=(k+arctg3)2,kZ例11. 说明 如何求在指定区间上的解集?(1)先求出通解,(2)让k取适当的整数,一一求出在指定区间上的特解,(3)写指定区间上的解例12. 解:方程化为说明 可化为关于某一三角函数的二次方程,然后按二次方程解例13. 除以cos2x化为2tg2
8、x-3tgx-2=0说明 关于sinx,cosx的齐次方程的解法:方程两边都除cosnx(n=1,2,3,)(cosx=0不是方程的解),转化为关于tgx的方程来解例14. 思考:引入辅助角,化为最简单的三角方程2x-30=k180+(-1)k30x=k90+(-1)k15+15(kZ)所以解集是x|x=k90+(-1)k15+15,kZ于是x=k60+(-1)k10+2238,(kZ)原方程的解集为x|x=k60(-1)k10+2238,kZ最简单的三角方程例15. 解 原方程可化为 ,即 解这个关于的二次方程,得,由,得解集为;由,得解集为所以原方程的解集为说明方程中的可化为,这样原方程便
9、可看成以为未知数的一元二次方程,当时,可用因式分解将原方程转化成两个最简方程,从而求得它们的解例16. 解:tg(x)tg(x)2ctgx , 去分母整理得tg2x, tgx, xk, kZ, 由根据定义知xk, xk, xk, kZ, 即 xk, xk, xk, 而中又增加了限制条件xk, kZ, 即从到有可能丢根,xk, 经验算xk是原方程的根, 原方程的解集是x| x xk或xk, kZ例17. 解:由sinxcosxa0得2sin(x)a, sin(x), 2a2 x0, 2, x, 2, 又原方程有且只有两个不同的解, a2, a2, 即|a|2时,原方程只有一解; 又当a时,sin
10、(x),得x或或, 解得x0或x或x2,此时原方程有三个解, a(2, )(, 2).同步练习:CCBB 7. 10. 解:(1) yarccos, 01, 0 arccot(2x1), xR, y(0, ).11. 解:函数y(arccosx)23arccosx, x1, 1, arccosx0, 设arccosxt, 0t, yt23t(t)2, 当t时,即xcos时, 函数取得最小值, 当t时,即x1时,函数取得最大值23.简单的三角方程: 1. 解下列方程.(2)5x=2k+3x或5x=2k+-3x或解:作出函数ysin2x和ysinx的图象,由图象知,它们的交点有3个。3. 解:(1
11、) tan3xtanx, 3xxk, x, 由于定义域为3xk, xk, 原方程的解集为x| xk, kZ. (2) sinxcosx, sin(x), x2k或x2k, x2k或x2k, kZ, 又x0, 4, 所有的的解为, 2,2, 4, 它们的和为9.4. 解一 因为(使的的值不可能满足原方程),所以在方程的两边同除以,得 解关于的二次方程,得,由,得解集为;由,得解集为所以原方程的解集为说明若方程的每一项关于的次数都是相同的(本题都是二次),那么这样的方程叫做关于的齐次方程它的解法一般是,先化为只含有未知数的正切函数的三角方程,然后求解解二 降次得 , 化简得 因为(使的的值不可能满足原方程),所以在方程的两边同除以,得由,得 ,即所以原方程的解集为说明由于转化方法的不同,所得解集的表达形式不同,但当是偶数时,变成;当是奇数时,变成,所以实质上与是相等的集合解三 降次得 , 化简得 , 即 ,得 ,即所以原方程的解集为专心-专注-专业
链接地址:https://www.31ppt.com/p-2769123.html