反三角函数及最简三角方程.doc
《反三角函数及最简三角方程.doc》由会员分享,可在线阅读,更多相关《反三角函数及最简三角方程.doc(20页珍藏版)》请在三一办公上搜索。
1、精选优质文档-倾情为你奉上反三角函数及最简三角方程一、知识回顾:1、反三角函数:概念:把正弦函数,时的反函数,成为反正弦函数,记作. ,不存在反函数.含义:表示一个角;角;.反余弦、反正切函数同理,性质如下表.名称函数式定义域值域奇偶性单调性反正弦函数增奇函数增函数反余弦函数减非奇非偶减函数反正切函数R 增奇函数增函数反余切函数R 减非奇非偶减函数 其中: (1) 符号arcsinx可以理解为,上的一个角(弧度),也可以理解为区间,上的一个实数;同样符号arccosx可以理解为0,上的一个角(弧度),也可以理解为区间0,上的一个实数; (2) yarcsinx等价于sinyx, y,, yar
2、ccosx等价于cosyx, x0, , 这两个等价关系是解反三角函数问题的主要依据; (3)恒等式sin(arcsinx)x, x1, 1 , cos(arccosx)x, x1, 1, tan(arctanx)=x,xRarcsin(sinx)x, x,, arccos(cosx)x, x0, ,arctan(tanx)=x, x(,)的运用的条件; (4) 恒等式arcsinxarccosx, arctanxarccotx的应用。2、最简单的三角方程方程方程的解集其中:(1)含有未知数的三角函数的方程叫做三角方程。解三角方程就是确定三角方程是否有解,如果有解,求出三角方程的解集; (2)
3、解最简单的三角方程是解简单的三角方程的基础,要在理解三角方程的基础上,熟练地写出最简单的三角方程的解; (3)要熟悉同名三角函数相等时角度之间的关系在解三角方程中的作用; 如:若,则;若,则; 若,则;若,则; (4)会用数形结合的思想和函数思想进行含有参数的三角方程的解的情况和讨论。二、典型例题:例1. 例2. 例3. 例4.使成立的x的取值范围是( ) 例5. 例6. 求值:(1) (2) 分析:问题的关键是能认清三角式的含义及运算次序,利用换元思想转化为三角求值。 例7.画出下列函数的图像(1) (2)例8.已知求(用反三角函数表示) 分析:可求的某一三角函数值,再根据的范围,利用反三角
4、函数表示角。例9.已知函数(1)求函数的定义域、值域和单调区间;(2)解不等式:例10.写出下列三角方程的解集(1); (2); (3)例11.求方程在上的解集.例12.解方程例13.解方程例14.解方程:(1) (2)思考:引入辅助角,化为最简单的三角方程例15.解方程例16.解方程:例17.已知方程在区间上有且只有两个不同的解,求实数a的取值范围。 说明对于两个相等的同名三角函数所组成的三角方程,可直接利用以下关系得到方程的解(1),则或;(2),则或;(3),则三、同步练习:反三角函数1.的值是 ( )A. B. C. D.2.下列关系式中正确的是 ( )A. B. C. D.3.函数的
5、定义域是 ( )A. B. C. D.4.在上和函数相同的函数是 ( )A. B. C. D.5.函数的反函数是 .6.求在上的反函数.7.比较与的大小. 8.研究函数的定义域、值域及单调性.9.计算:10.求下列函数的定义域和值域: (1) yarccos; (2) yarcsin(x2x); (3) yarccot(2x1), 11.求函数y(arccosx)23arccosx的最值及相应的x的值。 简单的三角方程1.解下列方程.(1) (2) 2.方程sin2xsinx在区间(0, 2)内的解的个数是 .3.(1) 方程tan3xtgx的解集是 . (2) 方程sinxcosx在区间0,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角函数 三角方程
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-2769123.html