立体几何专题:距离和角.doc
《立体几何专题:距离和角.doc》由会员分享,可在线阅读,更多相关《立体几何专题:距离和角.doc(4页珍藏版)》请在三一办公上搜索。
1、精选优质文档-倾情为你奉上立体几何专题:距离和角求“二面角”与“点到平面的距离”问题一直是高考命题的热点,而这两方面的题目又是很多学生感到头痛的。事实上,这两类问题有着较强的相关性,下面给出这两类问题的一个“统一”求解公式,让你一招通解两类问题,定理:如下图,若锐二面角的大小为,点A为平面内一点,若点A到二面角棱CD的距离为,点A到平面的距离AH=d,则有。说明:中含有3个参数,已知其中任意2个可求第3个值。其中是指二面角的大小,d表示点A到平面的距离,m表示点A到二面角棱CD的距离。值得指出的是:可用来求解点到平面的距离,也可用于求解相关的二面角大小问题。其优点在于应用它并不强求作出经过点A
2、的二面角的平面角ABH,而只需已知点A到二面角棱的距离,与二面角大小,即可求解点A到平面的距离,或已知两种“距离”即可求二面角的大小。这样便省去了许多作图过程与几何逻辑论证,简缩了解题过程。还要注意,当已知点A到平面的距离d与点A到二面角棱CD的距离m求解二面角的大小时,若所求二面角为锐二面角,则有;若所求二面角为钝二面角,则下面举例说明该公式在解题中的应用。例1. (2004年全国卷I理科20题)如下图,已知四棱锥P-ABCD,PBAD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120。(1)求点P到平面ABCD的距离;(2)求面APB与面C
3、PB所成二面角的大小。分析:如上图,作PO平面ABCD,垂足为O,即PO为点P到平面ABCD距离。第(1)问要求解距离PO,只需求出点P到二面角P-AD-O的棱AD的距离,及二面角P-AD-O的大小即可。第(2)问要求解二面角A-PB-C的大小,只需求出点C到二面角A-PB-C棱PB的距离及点C到半平面APB的距离即可。解:(1)如上图,取AD的中点E,连结PE。由题意,PEAD,即。又二面角P-AD-O与二面角P-AD-B互补,所以二面角P-AD-O的大小为60,即。于是由公式知:点P到平面ABCD的距离为。(2)设所求二面角A-PB-C的大小为,点C到平面PAB的距离为d。连接BE,则BE
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何 专题 距离
链接地址:https://www.31ppt.com/p-2766165.html