412_5370447_第6章wsn定位技术.ppt
《412_5370447_第6章wsn定位技术.ppt》由会员分享,可在线阅读,更多相关《412_5370447_第6章wsn定位技术.ppt(58页珍藏版)》请在三一办公上搜索。
1、第6章 WSN定位技术,6.1 定位技术简介6.1.1 基本概念和评价指标 1传感器节点定位的基本概念WSN的定位问题一般指对于一组未知位置坐标的网络节点,依靠有限的位置已知的锚节点,通过测量未知节点至其余节点的距离或跳数,或者通过估计节点可能处于的区域范围,结合节点间交换的信息和锚节点的已知位置,来确定每个节点的位置。在WSN节点定位技术中,根据节点是否已知自身的位置,把传感器节点分为信标节点(beacon node)或锚点(anchor)和未知节点(unknown node)。,第6章 WSN定位技术,信标节点在网络节点中所占的比例很小,可以通过携带GPS定位设备等手段获得自身的精确位置。
2、信标节点是未知节点定位的参考点。除了信标节点外,其他传感器节点就是未知节点,他们通过信标节点的位置信息来确定自身位置。如图6-1所示的传感器网络中,M代表信标节点,s代表未知节点。S节点通过与邻近M节点或已知得到信息的S节点之间的通信,根据一定的定位算法计算出自身的位置。图6-1WSN中信标节点和未知节点在WSN的各种应用中,监测到事件之后关心的一个重要问题就是该事件发生的位置。,第6章 WSN定位技术,全球定位系统GPS(global position system)是目前应用得最广泛最成熟的定位系统,通过卫星的授时和测距对用户节点进行定位,具有定位精度高、实时性好、抗干扰能力强等优点,但是
3、GPS定位适应于无遮挡的室外环境,用户节点通常能耗高体积大,成本也比较高,需要固定的基础设施等,这使得它不适用于低成本自组织的无线传感器网络。在机器人领域中,机器人节点的移动性和自组织等特性,使其定位技术与传感器网络的定位技术具有一定的相似性,但是机器人节点通常携带充足的能量供应和精确的测距设备,系统中机器人节点的数量很少,所以这些机器人定位算法也不适用于传感器网络。在传感器网络中,传感器节点能量有限、可靠性差、节点规模大且随机布放、无线模块的通信距离有限,对定位算法和定位技术提出了很高的要求。,第6章 WSN定位技术,2WSN定位算法特点在传感器网络中,传感器节点能量有限、可靠性差、节点数量
4、规模大且随机布放、无线模块的通信距离有限,对定位算法和定位技术提出了很高的要求。传感器网络的定位算法通常要求具备以下特点:(1)自组织性:传感器网络的节点随机分布,不能依靠全局的基础设施协助定位。(2)健壮性:传感器节点的硬件配置低、能量少、可靠性差、测量距离时会产生误差,算法必须具有良好的容错性。(3)能量高效:尽可能地减少算法中计算的复杂性,减少节点间的通信开销,以尽量延长网络的生存周期。通信开销是传感器网络的主要能量开销。(4)分布式计算:每个节点尽量计算自身位置,不能将所有信息传送到某个节点进行集中计算。,第6章 WSN定位技术,3传感器节点定位的基本术语(1)邻居节点(Neighbo
5、r Nodes):是指传感器节点通信半径内的所有其他节点,也就是说:在一个节点通信半径内,可以直接通信的所有其他点。(2)跳数(Hop Count):是指两个节点之间间隔的跳段总数。(3)跳段距离(Hop Distance):是指两个节点间隔的各跳段距离之和。(4)接收信号强度指示(Received Signal Strength Indicator,RSSI):是指节点接收到无线信号的强度大小。(5)到达时间(Time of Arrival,TOA):是指信号从一个节点传播到另一节点所需要的时间。,第6章 WSN定位技术,(6)到达时间差(Time Difference of Arrival
6、,TDOA):两种不同传播速度的信号从一个节点传播到另一节点所需要的时间之差。(7)到达角度(Angle of Arrival,AOA):是指节点接收到的信号相对于自身轴线的角度。(8)视线关系(Line of Sight,LOS):是指两个节点间没有障碍物间隔,能够直接通信。(9)非视线关系(Non Line of Sight,NLOS):是指两个节点之间存在障碍物。(10)基础设施(Infrastructure):是指协助传感器节点定位的已知自身位置的固定设备(如卫星、基站等)。,第6章 WSN定位技术,4传感器节点定位的评价指标无线传感器网络定位算法的性能直接影响其可用性,如何评价它们是
7、一个需要深入研究的问题。下面定性地讨论几个常用的评价标准(1)定位精度。(2)规模。(3)锚节点密度。(4)节点密度。(5)容错性和自适应性。(6)功耗。(7)代价上述7个性能指标不仅是评价WSN自身定位系统和算法的标准,也是其设计和实现的优化目标。为了实现这些目标的优化,有大量的研究工作需要完成。同时,这些性能指标是相互关联的,必须根据应用的具体需求做出权衡,以选择和设计合适的定位技术。,第6章 WSN定位技术,6.1.2 定位算法的分类因功耗和成本因素以及粗精度定位对大多数应用已足够当定性误差小于传感器节点无线通信半径的40%时,定位误差对路由性能和目标追踪精确度的影响不会很大),无需测距
8、的定位方案备受关注。1基于测距技术的定位和无需测距技术的定位根据定位算法是否需要通过物理测量来获得节点之间的距离(角度)信息,可以把定位算法分为基于测距的定位算法和无需测距的定位算法两类。前者是利用测量得到的距离或角度信息来进行位置计算,而后者一般是利用节点的连通性和多跳路由信息交换等方法来估计节点间的距离或角度,并完成位量估计。基于测距的定位算法总体上能取得较好的定位精度,但在硬件成本和功耗上受到一些限制。基于测距的定位机制使用各种算法来减小测距误差对定位的影响,包括多次测量,循环定位求精,这些都要产生大量计算和通信开销。所以,基于测距的定位机制虽然在定位精度上有可取之处,但并不适用于低功耗
9、、低成本的应用领域。,第6章 WSN定位技术,室内定位系统Cricket、AHLos(Ad-Hoc Localization System)算法、基于AOA的APS算法(Ad-hoc Positioning System)、RADAR算法、LCB算法(Localizable Collaborative Body)和DPE(Directed Position Estimation)算法等都是基于测距的定位算法;而质心算法(Centroid Algorithm)、DV-Hop(Distance Vector-Hop)算法、移动导标节点(Mobile Anchor Points,MAP)定位算法、H
10、iRLoc算法、凸规划(Convex Optimization)算法和MDS-MAP算法等就是典型非基于测距的定位算法。,第6章 WSN定位技术,2基于导标节点的定位算法和非基于导标节点的定位算法根据定性算法是否假设网络中存在一定比例的导标节点,可以将定位算法分为基于导标节点的定位算法和非基于导标节点的定位算法两类。对于前者,各节点在定位过程结束后可以获得相对于某个全局坐标系的坐标,对于后者则只能产生相对的坐标,在需要和某全局坐标系保持一致的时候可以通过引入少数几个导标节点和进行坐际变换的方式来完成。基于导标节点的定位算法很多,例如质心算法、DV-Hop、AHLos、LCB和APIT(Appr
11、oximate Point-In-Triangulation Test)等;而ABC(Assumption Based Coordinates)和AFL(Anchor-Free Localization)是典型的非基于导标节点的定位算法。,第6章 WSN定位技术,3物理定位与符号定位定位系统可提供两种类型的定位结果:物理位置和符号位置。例如,某个节点位于经纬度,就是物理位置;而某个节点在建筑物的423号房间就是符号位置。一定条件下,物理定位和符号定位可以相互转换。与物理定位相比,符号定位更适于某些特定的应用场合,例如,在安装有无线烟火传感器网络的智能建筑物中,管理者更关心某个房间或区域是否有火
12、警信号,而不是火警发生地的经纬度。大多数定位系统和算法都提供物理定性服务,符号定位的典型系统和算法有Active Badge、微软的Easy Living等,MIT的Cricket定位系统则可根据配置实现两种不同形式的定位。,第6章 WSN定位技术,4递增式定位算法和并发式定位算法根据计算节点位置的先后顺序可以将定位算法分为递增式定位算法和并发式定位算法两类。递增式定位算法通常是从3-4个节点开始,然后根据未知节点与已经完成定位的节点之间的距离或角度等信息采用简单的三角法或局部最优策略逐步对未知节点进行位置估计。该类算法的主要不足是具有较大的误差累积。并发式定性算法则是节点以并行的方式同时开始
13、计算位置。有些并发式算法采用迭代优化的方式来减小误差。并发式定位算法能更好地避免局部最小和误差累积。大多数算法属于并发式的,像ABC算法则是递增式的。,第6章 WSN定位技术,5紧密耦合与松散耦合紧密耦合(Tightly Coupled)定位系统是指信标节点不仅被仔细地部署在固定的位置,并且通过有线介质连接到中心控制器;而松散型定位(Loosely Coupled)系统的节点采用无中心控制器的分布式无线协调方式。紧密耦合定位系统适用于室内环境,具有较高的精确性和实时性,时间同步和信标节点间协调问题容易解决。典型的紧密耦合定位系统包括AT&T的Active Bat系统和Active Badge、
14、Hiball Tracker等。但这种部署策略限制了系统的可扩展性,代价较大,无法应用于布线工作不可行的室外环境。近年来提出的许多定位系统和算法,如Cricket,AHLos等部属于松散耦合型解决方案。,第6章 WSN定位技术,6集中式计算与分布式计算集中式计算(Centralized Computation)是指把所需信息传送到某个中心节点(例如一台服务器),并在那里进行节点定位计算的方式:分布式计算(Distributed Computation)指依赖节点间的信息文换和协调,由节点自行计算的定位方式。集中式汁算的优点在于从全局角度统筹规创,计算量和存储量几乎没有限制,可以获得相对精确的位
15、置估算。它的缺点包括与中心节点位置较近的节点会因为通信开销大而过早地消耗完电能,导致整个网络与中心节点信息交流的中断,无法实时定位等。集中式定性算法包括Convex Optionization、MDS-MAP等。N-hop multilateration primitive定位算法可以根据应用需求采用两种不同的计算模式。,第6章 WSN定位技术,无线传感器网线的分布式定位算法与计算机科学中其它己有的分布式体系结构有所不同,其分布式计算具有如下特点:(1)无线传感器网络本质上与地理位置有关,具有特殊的物理几何特性;(2)有关的通信代价所占比重较高;(3)物理测量的精度受限,因此追求高精确性计算不
16、现实;(4)节点功耗可能是限制计算能力的最大障碍;(5)最关键的是数据采集本身是分布式的且不可预测,因此需要设计新型的感知、通信和计算模型。,第6章 WSN定位技术,7粗粒度与细粒度依据定位所需信息的粒度可将定位算法和系统分为两类:根据信号强度或时间等来度量与信标节点距离的称为细粒度定位技术;根据与信标节点的接近度来度量的称为粗粒度定价技术。其中细粒度又可细分为基于距离和基于方向性测量两类。另外,应用在Radio-Camera定位系统中的信号模式匹配专利技术(signal pattern matching)也属于细粒度定位。粗粒度定位的原理是利用某种物理现象来感应是否有目标接近一个已知的位置,
17、如Active Badge、Convex Optionization、Xeror的Pare TAB系统、佐治亚理工学院的Smart Floor等。Cricker、AHLos、RADAR、LCB等都属于细粒度定位算法。,第6章 WSN定位技术,8绝对定位与相对定位绝对定位与物理定位类似,定位结果是一个标准的坐标位置,如经纬度。而相对定位通常是以网络中部分节点为参考,建立整个网络的相对坐标系统。绝对定位可为网络提供唯一的命名空间,受节点移动性影响较小,有更广泛的应用领域。但研究发现,在相对定位的基础上也能够实现部分路由协议,尤其是基于地理应置的路由,而且相对定位不需要信标节点。大多数定位系统和算法
18、都可以实现绝对定位服务,典型的相对定位算法和系统有SPA(Self Positioning Algorithm)、LPS(Local Positioning System)、SpotON,而MDS-MAP定位算法可以根据网络配置的不同分别实现两种定位。,第6章 WSN定位技术,9三角测量、场景分析和接近度定位定位技术也可分力三角测量、场景分析和接近度三类。其中,三角测是和接近度定位与粗、细粒度定位相似;而场景分忻定位是根据场景特点来推断目标位置,通常被观测的场景都有易于获得、表示和对比的特点,如信号强度和图像。场景分析的优点在于无需定位目标参与,有利于节能并具有一定的保密性;它的缺点在于:需要
19、事先预制所需的场景数据集,而且当场景发生变化时必须重建该数据集。RADAR系统(基于信号强度分析)和MIT的Sinart Rooms(基于视频图像)就是典型的场景分析定位系统。,第6章 WSN定位技术,62 测距方法6.2.1 接收信号强度指示法(RSSI)接收信号强度(Receivcd Signal Strength Indicator,RSSI)指示法是接收机通过测量射频信号的能量来确定与发送机的距离。由于RSSI指示已经是现有传感器节点标准功能,因此实现简单并且对节点的成本和功耗没有影响,因此RSSl方法已被广泛采用,不足之处是遮盖或折射会引起接收端产生严重的测量误差,因此精度较低,有时
20、测距误差可达到50,第6章 WSN定位技术,6.2.2 到达时间法(TOA)到达时间测距:已知信号的传播速度,根据信号的传播时间来汁算节点间的距离。图6-2给出了TOA测距的一个简单实现,采用伪噪声序列信号作为声波信号,根据声波的传播时间来测量节点间的距离。节点的定位部分主要由扬声器模块、麦克风模块、无线电模块和CPU模块组成。假设两个节点间时间同步,发送节点的扬声器模块在发送伪噪声序列信号的同时,无线电模块通过无线电同步信息通知接收节点伪噪声序列信号发送的时间,接收节点的麦克风模块在检测到伪噪声序列信号后,根据声波信号传播时间和速度计算发送节点和接收节点之间的距离。与无线射频信号相比,声波频
21、率低,速度慢,对节点硬件的成本和复杂度的要求都低,但是声波的缺点是传播速度容易受到大气条件的影响。基于TOA的定应精度高,但要求节点间保持精确的时间同步、因此时传感器节点的硬件和功耗提出了较高的要求。到达时间法(Time of Arrival,TOA)该方法通过测量信号传输时间来估算两节点之间的距离,精度较好。缺点是无线信号的传输速度快,时间测量上的很小误差可导致很大的距离误差值,另外要求传感器节点的计算能力较强。,第6章 WSN定位技术,一种用来测量信号传输所用时间的方法是测量信号单向传播时间。这种方法测量发送和到达接收方的绝对时间差,发送方和接收方的本地时间需精确同步。例如通过测量射频信号
22、到达时间来测距,精度要求分米级时,需要双方时间同步的误差在lns内。另外一种方法是测量信号往返时间差,接收节点在收到信号后直接发回,发送节点测量收发的时间差,由于仅使用发送节点的时钟,因此避免节点间时间同步的要求。这种方法的误差来源于第二个节点的处理延时,可以通过预先校准等方法来获得比较准确的估计。最近精确测量TOA时间的一个趋势是使用超宽带(UWB)。UWB信号有着大于500MHz的带宽和非常短的脉冲,这种特点使得UWB信号容易从多径信号中区分出来,有着良好的时问精度。,第6章 WSN定位技术,6.2.3 到达时间差法(TDOA)到达时间差法(TDOA,Time Difference of
23、Arrival)是测量不同的接收节点接收到同一个发射信号的时间差。TDOA与TOA不同,无需发送方和接收方时钟同步,而是转为对接收节点之间的时间同步要求。假设发送节点t发射一RF信号,接收节点i,j接收到信号的时间差与节点t,i,j坐标的关系如下:(6-4)由式(6-4)可知,测得,待定位节点t的坐标 在已知位置的节点i,j坐标 和 为焦点的双曲线上,如图6-3所示,未知节点在坐标(1.2,1)处,4个锚节点两两组合产生一条双曲线,由这些双曲线的交点可以推算出未知节点的位置。,第6章 WSN定位技术,第6章 WSN定位技术,6.2.4 到达角法(AOA)如图6-4,到达角法(AOA,AngIe
24、 of Arrival)方法通过配备天线阵列或多个接收器来估测其它节点发射的无线信号的到达角度。AOA方法需要额外硬件,在体积和功耗上对节点提出更高的要求。,第6章 WSN定位技术,6.3 常用的定位计算方法测边或测角是WSN定位中应用最为广泛的方法,它能确定节点大概的位置范围,因此值得对它的数学原理进行了解。6.3.1 三边定位与求解三边定位与求解原理如图6-6所示,假设有三个信标节点A、B、C坐标分别为,未知节点D的坐标为,与三个信标节点的距离分别为,那么,存在以下公式,即,第6章 WSN定位技术,从最后一个方程开始分别减去第一、二个方程得:(6-6)由式(6-6)可得到节点D的坐标为(6
25、-7),第6章 WSN定位技术,6.3.2 三角定位与求解三角定位与求解原理如图6-7所示,已知三个信标节点A、B、C坐标分别为,未知节点D相对于节点A、B、C的角度分别为、,节点D的坐标为。,第6章 WSN定位技术,对于节点A、B和角,如果弧段AB在 内,那么能够唯一确定一个圆。设圆心为,半径为,那么,并且有下列公式,即(6-8)由式(6-8)能够确定圆心 点的坐标和半径。同理对B、C和角 与A、C和角 分别确定相应的圆心 和半径 与和半径。最后利用三边测量法,由点D、与 确定D点坐标。,第6章 WSN定位技术,6.3.4 极大似然估计法 极大似然估计法(maximum likelihood
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 412 _5370447_ wsn 定位 技术
链接地址:https://www.31ppt.com/p-2720768.html