工程流体力学--第四章--不可压缩流体的有旋流动和二维无旋流动.ppt
《工程流体力学--第四章--不可压缩流体的有旋流动和二维无旋流动.ppt》由会员分享,可在线阅读,更多相关《工程流体力学--第四章--不可压缩流体的有旋流动和二维无旋流动.ppt(96页珍藏版)》请在三一办公上搜索。
1、第四章不可压缩流体的有旋流 动和二维无旋流动,第一节 流体微团运动分析第二节 有旋流动和无旋流动第三节 无旋流动的速度势函数第四节 二维平面流动的流函数第五节 基本的平面有势流动第六节 平面势流的叠加流动,欢迎进入第四章的学习,流体由于具有易变形的特性(易流动性),因此流体的运动要比工程力学中的刚体的运动复杂得多。在流体运动中,有旋流动和无旋流动是流体运动的两种类型。由流体微团运动分析可知,有旋流动是指流体微团旋转角速度 的流动,无旋流动是指 的流动。实际上,黏性流体的流动大多数是有旋流动,而且有时是以明显的旋涡形式出现的,如桥墩背流面的旋涡区,船只运动时船尾后形成的旋涡,大气中形成的龙卷风等
2、等。但在更多的情况下,流体运动的有旋性并不是一眼就能看得出来的,如当流体绕流物体时,在物体表面附近形成的速度梯度很大的薄层内,每一点都有旋涡,而这些旋涡肉眼却是观察不到的。至于工程中大量存在着的紊流运动,更是充满着尺度不同的大小旋涡。,流体的无旋流动虽然在工程上出现得较少,但无旋流动比有旋流动在数学处理上简单 得多,因此,对二维平面势流在理论研究方面较成熟。对工程中的某些问题,在特定条件下对黏性较小的流体运动进行无旋处理,用势流理论去研究其运动规律,特别是绕流物体的流动规律,对工程实践具有指导意义和应用价值。因此,本章先阐述有旋流动的基本概念及基本性质,然后再介绍二维平面势流理论。,第一节 流
3、体微团运动分析,刚体的一般运动可以分解为移动和转动两部分。流体与刚体的主要不同在于它具有流 动性,极易变形。因此,任一流体微团在运动过程中不但与刚体一样可以移动和转动,而且还会发生变形运动。所以,在一般情况下流体微团的运动可以分解为移动、转动和变形运动三部分。,一、表示流体微团运动特征的速度表达式,图 4-1 分析流体微团运动用图,剪切变形速率、,,引入记号,并赋予运动特征名称:线变形速率、,,、,、,,,(4-1),(4-2),于是可得到表示流体微团运动特征的速度表达式为,旋转角速度、,,(4-3),(4-4),二、流体微团运动的分解,为进一步分析流体微团的分解运动及其几何特征,对式(4-4
4、)有较深刻的理解,现在分别说明流体微团在运动过程中所呈现出的平移运动、线变形运动、角变形运动和旋转运动。为简化分析,仅讨论在 平面上流体微团的运动。假设在时刻,流体微团ABCD为矩形,其上各点的速度分量如图4-2所示。由于微团上各点的速度不同,经过时间,势必发生不同的运动,微团的位置和形状都将发生变化,现分析如下。,1平移运动,图 4-2 分析流体微团平面运动用图,a,2线变形运动,b,图4-3 流体微团平面运动的分解(a),返回,图4-3 流体微团平面运动的分解(b),返回,图4-3 流体微团平面运动的分解(c),返回,图4-3 流体微团平面运动的分解(d),返回,3角变形运动,c,4旋转运
5、动,d,综上所述,在一般情况下,流体微团的运动总是可以分解成:整体平移运动、旋转运动、线变形运动及角变形运动,与此相对应的是平移速度、旋转角速度、线变形速率和剪切变形速率。,第二节 有旋流动和无旋流动,一、有旋流动和无旋流动的定义二、速度环量和旋涡强度,一、有旋流动和无旋流动的定义,流体的流动是有旋还是无旋,是由流体微团本身是否旋转来决定的。流体在流动中,如果流场中有若干处流体微团具有绕通过其自身轴线的旋转运动,则称为有旋流动。如果在整个流场中各处的流体微团均不绕自身轴线的旋转运动,则称为无旋流动。这里需要说明的是,判断流体流动是有旋流动还是无旋流动,仅仅由流体微团本身是否绕自身轴线的旋转运动
6、来决定,而与流体微团的运动轨迹无关,在图4-4(a)中,虽然流体微团运动轨迹是圆形,但由于微团本身不旋转,故它是无旋流动;在图4-4(b)中,虽然流体微团运动轨迹是直线,但微团绕自身轴线旋转,故它是有旋流动。在日常生活中也有类似的例子,例如儿童玩的活动转椅,当转轮绕水平轴旋转时,每个儿童坐的椅子都绕水平轴作圆周运动,但是每个儿童始终是头向上,脸朝着一个方向,即儿童对地来说没有旋转。,图4-4 流体微团运动,无旋流动,有旋流动,判断流体微团无旋流动的条件是:流体中每一个流体微团都满足,根据式(4-3),则有,(4-8),二、速度环量和旋涡强度,1速度环量 为了进一步了解流场的运动性质,引入流体力
7、学中重要的基本概念之一速度环量。在流场中任取封闭曲线k,如图4-5所示。速度 沿该封闭曲线的线积分称为速度沿封闭曲线k的环量,简称速度环量,用 表示,即 式中 在封闭曲线上的速度矢量;速度与该点上切线之间的夹角。速度环量是个标量,但具有正负号。,(4-9),图4-5 沿封闭曲线的速度环量,在封闭曲线k上的速度矢量,速度 与该点上切线之间的夹角,速度环量的正负不仅与速度方向有关,而且与积分时所取的绕行方向有关。通常规定逆时针方向为K的正方向,即封闭曲线所包围的面积总在前进方向的左侧,如图4-5所示。当沿顺时针方向绕行时,式(4-9)应加一负号。实际上,速度环量所表征的是流体质点沿封闭曲线K运动的
8、总的趋势的大小,或者说所反映的是流体的有旋性。由于和,则,代入式(4-9),得,(4-10),2旋涡强度,沿封闭曲线的速度环量与有旋流动之间有一个重要的关系,现仅以平面流动为例找出这个关系。如图4-6所示,在平面上取一微元矩形封闭曲线,其面积,流体在A点的速度分量为和,则B、C和D点的速度分量分别为:,图4-6 沿微元矩形的速度环量,于是,沿封闭曲线反时针方向ABCDA的速度环量将、和、各值代入上式,略去高于一阶的无穷小各项,再将式(4-3)的第三式代入后,得然后将式(4-11)对面积积分,得,(4-11),(4-12),于是得到速度环量与旋转角速度之间关系的斯托克斯定理:沿封闭曲线的速度环量
9、等于该封闭周线内所有的旋转角速度的面积积分的二倍,称之为旋涡强度I,即和式中 在微元面积 的外法线 上的分量。,(4-13),由式(4-11)可导出另一个表示有旋流动的量,称为涡量,以 表示之。它定义为单位面积上的速度环量,是一个矢量。它在Z轴方向的分量为 对于流体的空间流动,同样可求得X和Y轴方向涡量的分量 和。于是得即,(4-14),(4-15),也就是说,在有旋流动中,流体运动速度 的旋度称为涡量。由此可见,在流体流动中,如果涡量的三个分量中有一个不等于零,即为有旋流动。如果在一个流动区域内各处的涡量或它的分量都等于零,也就是沿任何封闭曲线的速度环量都等于零,则在这个区域内的流动一定是无
10、旋流动。下面举两个简单的例子来说明速度环量和旋涡强度的物理意义,以及有旋流动和无旋流动的区别。,【例4-1】一个以角速度 按反时针方向作像刚体一样的旋转的流动,如图4-7所示。试求在这个流场中沿封闭曲线的速度环量,并证明它是有旋流动.(解)【例4-2】一个流体绕O点作同心圆的平面流动,流场中各点的圆周速度的大小与该 点半径成反比,即,其中C为常数,如图4-8所示。试求在流场中沿封闭曲线的速度环量,并分析它的流动情况。(解),【解】在流场中对应于任意两个半径 和 的圆周速度各为 和,沿图中画斜线扇形部分的周界ABCDA的速度环量 可见,在这个区域内是有旋流动。又由于扇形面积 于是 上式正是斯托克
11、斯定理的一个例证。以上结论可推广适用于圆内任意区域内。,返回例题,图4-7 有旋流动中速度环量的计算,图4-8 无旋流动中速度环量的计算,返回例题,【解】沿扇形面积周界的速度环量 可见,在这区域内是无旋流动。这结论可推广适用于任何不包围圆心O的区域内,例如。若包有圆心(),该处速度等于无限大,应作例外来处理。现在求沿半径 的圆周封闭曲线的速度环量 上式说明,绕任何一个圆周的流场中,速度环量都不等于零,并保持一个常数,所以是有 旋流动。但凡是绕不包括圆心在内的任何圆周的速度环量必等于零,故在圆心O点处必有旋涡存在,圆心是一个孤立涡点,称为奇点。,返回例题,第三节 无旋流动的速度势函数,如前所述,
12、在流场中流体微团的旋转角速度 在任意时刻处处为零,即满足 的流动为无旋流动,无旋流动也称为有势流动。一、速度势函数引入 二、速度势函数的性质,一、速度势函数引入,由数学分析可知,是 成为某一标量函数 全微分的充分必要条件。则函数 称为速度势函数。因此,也可以说,存在速度势函数 的流动为有势流动,简称势流。根据全微分理论,势函数 的全微分可写成 于是得,(4-16),按矢量分析对于圆柱坐标系,则有于是 从以上分析可知,不论是可压缩流体还是不可压缩流体,也不论是定常流动还是非定常流动,只要满足无旋流动条件,必然存在速度势函数。,(4-17),(4-18),二、速度势函数的性质,(1)不可压缩流体的
13、有势流动中,势函数 满足拉普拉斯方程,势函数 是调和函数。将式(4-16)代入到不可压缩流体的连续性方程(3-28)中,则有 式中 为拉普拉斯算子,式(4-19)称为拉普拉 斯方程,所以在不可压流体的有势流动中,速度势必定满足拉普拉斯方程,而凡是满足拉普拉斯方程的函数,在数学分析中称为调和函数,所以速度势函数是一个调和函数。,(4-19),从上可见,在不可压流体的有势流动中,拉普拉斯方程实质是连续方程的一种特殊形 式,这样把求解无旋流动的问题,就变为求解满足一定边界条件下的拉普拉斯方程的问题。,(2)任意曲线上的速度环量等于曲线两端点上速度势函数 值之差。而与曲线的形状无关。根据速度环量的定义
14、,沿任意曲线AB的线积分 这样,将求环量问题,变为求速度势函数值之差的问题。对于任意封闭曲线,若A点和B点重合,速度势函数是单值且连续的,则流场中沿任一条封闭曲线的速度环量等于零,即。,第四节 二维平面流动的流函数,一、流函数的引入 对于流体的平面流动,其流线的微分方程为,将其改写成下列形式(4-20)在不可压缩流体的平面流动中,速度场必须满足不可压缩流体的连续性方程,即 或(4-21)由数学分析可知,式(4-21)是()成为某函数全微分的充分必要条件,以 表示该函数,则有(4-22)函数称为流场的流函数。由式(4-22)可得(4-23),由式(4-22),令,即 常数,可得流线微分方程式(4
15、-20)。由此可见,常数的曲线即为流线,若给定一组常数值,就可得到流线簇。或者说,只要给定流场中某一固定点的坐标()代入流函数,便可得到一条过该点的确定的流线。因此,借助流函数可以形象地描述不可压缩平面流场。对于极坐标系,可写成(4-24)(4-25)在已知速度分布的情况下,流函数的求法与速度势函数一样,可由曲线积分得出。至此可看到,在不可压缩平面流动中,只要求出了流函数,由式(4-23)或式(4-24)就可求出速度分布。反之,只要流动满足不可压缩流体的连续性方程,不论流场是否有旋,流动是否定常,流体是理想流体还是黏性流体,必然存在流函数。这里需说明,等流函数线与流线等同,仅在平面流动时成立。
16、对于三维流动,不存在流函数,也就不存在等流函数线,但流线还是存在的。,二、流函数的性质,(1)对于不可压缩流体的平面流动,流函数 永远 满足连续性方程。将式(4-23)代入式(4-21)得 即流函数永远满足连续性方程。(2)对于不可压缩流体的平面势流,流函数 满足拉普 拉斯方程,流函数也是调和函数。对于平面无旋流动,则 将式(4-23)代入上式 因此,不可压缩流体平面无旋流动的流函数也满足拉普拉斯方程,也是一个调和函数。因此,在平面不可压缩流体的有势流场中的求解问题,可以转化为求解一个满足边界条件的 的拉普拉斯方程.,(3)平面流动中,通过两条流线间任一曲线单位厚度的体积流量等于两条流线的流函
17、数之差。这就是流函数 的物理意义。如图4-9所示,在两流线间任一曲线AB,则通过单位厚度的体积流量为(4-26)由式(4-26)可知,平面流动中两条流线间通过的流量等于这两条流线上的流函数之差。,图4-9 说明流函数物理意义用图,三、和 的关系,(1)满足柯西-黎曼条件 如果是不可压缩流体的平面无旋流动,必然同时存在着速度势和流函数,比较式(4-16)和式(4-23),可得到速度势函数和流函数之间存在的如下关系(4-27)(4-28)这是一对非常重要的关系式,在高等数学中称作柯西-黎曼条件。因此,和 互为共轭调和函数,这就有可能使我们利用复变函数这样一种有力的工具求解此类问题。当势函数 和 流
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工程 流体力学 第四 不可 压缩 流体 流动 二维
链接地址:https://www.31ppt.com/p-2719121.html