华北水利水工建筑物课程设计.doc
《华北水利水工建筑物课程设计.doc》由会员分享,可在线阅读,更多相关《华北水利水工建筑物课程设计.doc(17页珍藏版)》请在三一办公上搜索。
1、第一章 基本资料1.1 工程概况顺河水量丰沛,顺河中游与豫运河上游的礼河、还乡河分水岭均较单薄,并处于低山丘陵区,最窄处仅10余公里。通过礼河、洲河及输水渠道,可通向唐山市;经还乡河、陡河可通秦皇岛市。为解决唐山市、秦皇岛市两地区用水,国家决定修建顺河水库。顺河水库位于河北省唐山、承德两地区交界处,坝址位于迁西县扬岔子村的顺河干流上,控制流域面积33700平方公里,总库容为25.5亿立方米。水库距迁西县城35公里,有公路相通。 水库枢纽由主坝、电站及泄水底孔等组成,水库主要任务是调节水量,供天津市和唐山地区工农业及城市人民生活用水,结合引水发电,并兼顾防洪要求,尽可能使其工程提前竣工获得收益,
2、尽早建成。 根据水库的工程规模及其在国民经济中的作用,枢纽定为一等工程,主坝为I级建筑物,其它建筑物按II级建筑物考虑。1.2 水文分析1.年径流:顺河水量较充沛,顺河站多年平均年径流量为24.5亿立方米占全流域的53%,年内分配很不均匀,主要集中在汛期七、八月份。丰水年时占全年5060%,枯水年占3040%,而且年际变化也很大。2.洪水:多发生在七月下旬至八月上旬,有峰高量大涨落迅速的特点,据调查近一百年来有六次大水,其中1883年最大,由红痕估算洪峰流量约为2440027400m/s,实测的45年资料中最大洪峰流量发生在1962年为18800m/s。3.泥沙:本流域泥沙颗粒较粗,中值粒径0
3、.0375毫米,全年泥沙大部分来自汛期七、八月份,主要产于一次或几次洪峰内且年际变化很大,由计算得,多年平均悬移质输沙量为1825万吨多年平均含沙量7.45公斤/立方米。推移质缺乏观测资料。可计入前者的10%,这样总入库沙量为2010万吨。淤砂浮容重为0.9吨/立米,内摩擦角为12度。淤砂高程157.5米。1.3 气象库区年平均气温为10左右,一月份最低月平均产气温为零下6.8,绝对最低气温达零下21.7(1969年)7月份最高月平均气温25,绝对最高达39(1955年),本流域无霜期较短(90180天)冰冻期较长(120200天),顺河站附近河道一般12月封冻,次年3月上旬解冻,封冻期约70
4、100天,冰厚0.40.6米,岸边可达1米,流域内冬季盛行偏北风,风速可达七、八级,有时更大些,春秋两季风向变化较大夏季常为东南风,多年平均最大风速为18米/秒,水库吹程D=3公里。1.4 工程地质 库区地质:顺河水库、库区属于中高山区,河谷大都为峡谷地形,只西城峪至北台子一带较为宽阔沿河两岸阶地狭窄,断续出现且不对称,区域内无严重的坍岸及渗漏问题。第四大岩层(Ar I 4)为角闪斜长片麻岩。具粗粒至中间细粒纤状花岗变晶结构,主要矿物为斜长石、石英及角闪石,本层岩体呈厚层块状、质地均一、岩性坚硬、抗风化力强、工程地质条件较好,总厚度185米左右。岩石物理力学性质:岩石容重为2.682.70吨/
5、立米,饱和抗压强度,弱风化和微分化岩石均在650公斤/厘米2以上,有的可达1100公斤/厘米2,混凝土与岩石的磨擦系数微分化及弱风化化下部,可取=1.10,=7.5kg/cm2。地震:库区附近历史地震活动较为频繁,近年来微繁。弱震仍不断发生,其中1936年和1976年两次发生6度左右地震,1977年6月国家地震局地震地质大队对本区域地震问题作了鉴定,水库的基本烈度为6度,考虑到枢纽的重要性,和水库激发地震的可能性拦河坝设防烈度采用7度。1.5 枢纽建筑物特性指标项 目单 位指 标备 注水位校核洪水位米227.2设计洪水位米225.7p=0.01%正常蓄水位米224.7p=0.1%汛期限制水位米
6、216.0死水位(发电)米180.0校核洪水位尾水位米156.8设计洪水尾水位米152.0正常尾水位米138.4库容总库容亿立米25.5计入十年淤积调洪库容亿立米7.4兴利库容亿立米19.5共用库容亿立米5.6死库容亿立米4.2计入十年淤积坝 型混凝土重力坝坝顶溢孔数孔19堰顶高程米210.0闸墩的中墩厚度为3米每孔净宽米15.0(横缝设在闸墩中间)工作闸门尺寸米米1515弧形钢闸门启闭机(270吨)台19固定式卷扬机设计洪水下泄能力米3/秒32300校核水位下泄量42900限泄275003泄水孔进口底高程米160.0底孔数目孔4工作闸门尺寸(宽高)米米57弧形钢闸门启闭机台4设计水位泄水能力
7、米3/秒4340校核水位泄水能力米3/秒4430电站引水管道水管道进口底高程米170.0三条引水管管线长度米121.0管 径米5.0最大引水流量米3/秒104每条引水道工作闸门扇米米357平板钢闸门工作闸门启闭机台324070吨液压平板检修门米米58.5式共用一扇检修门启闭机台1400/25吨门机电站主厂房尺寸(长宽高)米米米7219.139.00机组间距米16水轮发电机组台3装机容量万瓦36=18水轮机型号HL702-LJ330额定出力万瓦6.18发电机型号TS-750/19036额定出力万瓦6.0主要压器型号SSPL-80000/220输电线电压千伏220共3台第二章坝体剖面拟定2.1 剖
8、面拟定原则1、设计断面要满足稳定和强度要求;2、力求剖面较小;3、外形轮廓简单;4、工程量小,运用方便,便于施工。重力坝的基本剖面是指在自重、静水压力和扬压力三项主要荷载作用下,满足稳定和强度要求,并使工程量最小的三角形剖面,如图21所示,在已知坝高H、水压力P、抗剪强度参数f、c 和扬压力U 的条件下,根据抗滑稳定和强度要求,可以求得工程量最小的三角形剖面尺寸。图2-1 重力坝的基本剖面图示2.2 拟定实用剖面2.2.1 确定坝顶高程(1)高差h 的计算根据混凝土重力坝设计规范(SL319-2005)8.1.1,坝顶应高于校核洪水位,坝顶上游防浪墙顶的高程应高于波浪顶高程,其与正常蓄水位或校
9、核洪水位的高差,可由下边公式(8.1.1)计算,应选择两者中防浪顶高程中高者作为选定高程。 式中:-防浪墙顶至正常蓄水位或校核洪水位的高差,m; -波高,m; -波浪中心线至正常或校核洪水位的高差,m; -安全超高;根据基本资料可知:水库吹程D=3103m,多年平均最大风速V0=18m/s。该工程的结构安全级别为级,故查得设计洪水位情况hc0.7m;校核洪水位情况hc0.7m。下面按官厅公式计算h1% , hz。波高hl:gD/V02=28(20250),为累计频率5%的波高h5%规范规定应采用累计频率为1%时的波高,对应于5%波高,应乘以1.24;首先计算波浪高度hl 和波浪长度L 和波浪中
10、心线超出静水面的高度hz。1)、 设计洪水位时:设计洪水位时h 计算风速采用50 年一遇的风速2 V0 =218=36m/s,吹程D=3103m。波浪三要素计算如下:波高hl=0.0166 V05/4 D1/3=2.11m波长L=10.4(hl)0.8 =19m壅高(一般峡谷水库因,所以:); 取hz=hl2/L=0.736m由规范SL319-2005中波浪爬高公式计算得出h=h5% =2.11m因gD/V02=28,h1%=1.24h5%=2.616m ; hz = 0.736m ; hc = 0.7mh = h1% + hz + hc=4.05m2)、 校核洪水位时:计算方法同上,V0 取
11、18 m/sh = h1% + hz + hc=1.10+0.26+0.5=1.85m(2)坝顶高程计算坝顶高程按下式计算,并选用其中较大值坝顶高程=设计洪水位+h 设=225.7+4.05=229.75m坝顶高程=校核洪水位+h 校=227.2+1.85=229.05m取设计洪水位时的情况229.75m为保证坝体运行安全,需设置防浪墙,取1.2m,为229.75m。2.2.2 确定坝高1、枢纽布置方案拟定枢纽布置是确定挡水坝段、溢流坝段、电站坝段、底孔坝段的相互位置,挡水坝段布置在河床两岸,河床中间为溢流坝段、电站坝段、底孔坝,而溢流坝段与电站坝段不宜建在一起,故枢纽布置方案有两种:方案一
12、电站坝段在右岸优点:1、进坝公路在左岸,便于交通运输;2、电站坝段在右岸主河槽位置,水轮机安装高程低,从而有利于发电。缺点:左岸设溢流坝,冲刷坑部位地质条件较差。方案二 电站坝段在左岸优点:1、电站布置在左岸,地势开阔,布置方便;2、溢流坝位于右岸河床段,使冲刷避开左岸地质条件较差的区域。缺点:增加开挖工程量,运输不方便综上所述,方案一工程量小,运输方便,且左岸冲刷问题可经工程措施予以处理,保证大坝安全稳定,故选方案一2、确定坝高根据规范,坝高超过100m 时,可建在新鲜、微风化至弱风化下部基岩上。原则上应考虑技术加固处理后,在满足坝的强度和稳定的基础上,减少开挖。基础中存在的局部工程地质缺陷
13、,例如表层夹泥裂缝、强风化区、断层破碎带、节理密集带及岩溶充填物等均应结合基础开挖予以挖除。由方案一,河床的片麻岩地基上修建实体重力坝,通过立视图上确定的坝基开挖线定出建基面最低开挖高程为126.0m。因此,最大坝高为228.55 -126=102.55m属于高坝。2.2.3 坝顶宽度坝顶宽度应根据设备布置、运行、检修、施工和交通等需要确定并应满足抗震,特大洪水时维护等要求。因无特殊要求,根据规范的规定,坝顶宽度可采用坝高的8%10%取值,且不小于2m 并应满足交通和运行管理的需要。按坝高的10%计算,即为10.4 米,考虑到上游防浪墙、下游侧护栏、排水沟槽及两边人行道等,取坝顶宽为10m,以
14、满足大坝维修作业通行需要。2.2.4 坝坡的确定拟定坝体形状为基本三角形。坝的下游面为均一斜面,斜面的延长线与上游坝面相交于最高库水位处,为了便于布置进口控制设备,又可利用一部分水重帮助坝体维持稳定,本次设计采用上游坝面上部铅直,下部倾斜的形式。该形式为实际工程中经常采用的一种形式,具有比较丰富的工程经验。根据已知条件,上游坝坡坡率n=0.2,做成上铅直下部倾向上游;下游坝坡坡率m=0.60.8,取m=0.8。在上下游坡率及坝顶高程已知的条件下,上游起点高程为185.0m,下游起波点高程为228.55m2.2.5 基础灌浆廊道尺寸拟定高、中坝内必须设置基础灌浆廊道,兼作灌浆、排水和检查之用。基
15、础灌浆廊道的断面尺寸,应根据浇灌机具尺寸即工作要求确定,为了保证完成其功能且可以自由通行,设计基础灌浆廊道断面取3.04.5m,形状采用城门洞型。廊道的上游壁离上游侧面的距离应满足防渗要求,在坝踵附近距上游坝面0.050.1 倍作用水头、且不小于45m 处设置,本次设计取9m,为满足压力灌浆,基础灌浆廊道距基岩面不宜小于1.5 倍廊道宽度,取6m。初步拟定坝体形状剖面如图所示。图2-2 非溢流坝段剖面尺寸图第三章 稳定分析3.1 荷载计算及其组合重力坝的主要荷载主要有:自重、静水压力、浪压力、泥沙压力、扬压力、地震荷载等,常取1坝长进行计算。荷载组合可分为基本组合与特殊组合两类。基本组合属于设
16、计情况或正常情况,由同时出现的基本荷载组成。特殊组合属校核情况或非常情况,由同时出现的基本荷载和一种或几种特殊荷载组成。设计时应从这两类组合中选择几种最不利的、起控制作用的组合情况进行计算,使之满足规范中规定的要求。本次设计考虑的基本荷载组合为正常蓄水位和设计洪水位;特殊组合为校核洪水位和地震情况,它们分别考虑的荷载如下表所示。表3-1 荷载组合考虑情况荷载自重(水重)静水压力扬压力泥沙压力浪压力地震荷载动水压力泥沙压力基本组合校核洪水位情况 注:1.应根据各种作用同时发生的实际可能性,选择计算中的最不利的组合;2.分期施工的坝应按相应的荷载组合分期进行计算。3.施工期的情况应作必要核算,作为
17、特殊组合。4.根据地质和其他条件,如考虑运用时排水设备,易于堵塞,须经常维修时,应考虑排水失效的情况,作为特殊组合。5.地震情况的静水压力、扬压力、浪压力按正常蓄水位计算。6.表中的“”表示应考虑的荷载。下面就各种情况计算相应荷载,计算示意图如下 W12 W2H1 W2 W13 W3 W11 Pd H2 b3 U4 H2 H1 U2 U3 H U1图3-1 重力坝荷载计算示意图3.1.1 自重W坝体自重的计算公式: W =Vc(kN) (3-6)式中 V坝体体积,m3;由于取1m坝长,可以用断面面积代替,通常把它分成如图3-1 所示的若干个简单的几何图形分别计算重力;c 坝体混凝土的重度(本设
18、计中混凝土的重度为24kN/ m3)分解后的三部分自重:W= W1 + W2 + W3 =240.511.859+2410102.55+240.591.2573=112464kN3.1.2 静水压力P静水压力是作用在上下游坝面的主要荷载,计算时常分解为水平水压力PH和垂直水压力PV两种。根据水力学公式水平水压力PH 计算公式为: 式中: 计算点处的作用水头,m;w 水的重度,常取9.81 kNm3;垂直水压力PV 按水重计算。计算正常蓄水位情况下的上下游水深:上游水深H1 =227.2-124.0=103.2m;下游水深H2 =156.8-124.0=32.8m上游垂直水压力:Pv1=8022
19、.5kN 下游垂直水压力:Pv2=30.80.830.80.59.81=3720kN 水重:Pv= Pv1+ Pv2=8022.5+3720=11742.5 kN()上游水平水压力:PH1 =0.59.81102.552=51533kN()下游水平水压力:PH2=0.59.8130.82=4650kN()泥沙压力Ps一般计算年限取50100 年,水平泥沙压力Ps 为:式中:sb泥沙的浮容重,0.99.8kN/m3;hs 坝前淤沙厚度,157.5-126=31.5ms 淤沙的内摩擦角,( 12)。故泥沙压力为Ps=1/20.99.8133.52tan2(45- 12/2)=2889kN浪压力1.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 华北 水利 水工 建筑物 课程设计

链接地址:https://www.31ppt.com/p-2702321.html