电缆树枝放电介绍.ppt
《电缆树枝放电介绍.ppt》由会员分享,可在线阅读,更多相关《电缆树枝放电介绍.ppt(28页珍藏版)》请在三一办公上搜索。
1、35kV及以下塑料绝缘电力电缆在运行中产生的故障简析,电缆故障产生的原因,根据国内外报导,XLPE电缆发生事故的原因如下:1.水树枝劣化 它是XLPE电缆事故的主要原因,约占事故的71%,多发生于自然劣化。,2.铜屏蔽带断裂 在铜屏蔽带一端接地的电缆中,当铜屏蔽带断裂时,非接地一端的铜屏蔽带成为非接地状态,该铜屏蔽带上将感应出高电压,这个高电压若导致断裂部位发生放电,往往引起绝缘破坏。断裂部位放电的示意图如图所示。铜屏蔽带断裂的特征是:(1)单芯电缆比三芯电缆的事故多。(2)从投运到破坏的时间,从数周到数年不等。(3)断裂部位的导体电阻增大到数千欧,不能保护非接地侧电缆的对地闪络。(4)断裂部
2、位放电时冒火、冒烟,严重时可能引起火灾。,3.铜屏蔽接地故障 XLPE电缆铜屏蔽接地故障已逐渐引起现场的重视。例如某地区的XLPE电缆多半采取直埋方式,为此将终端头的铜屏蔽地线和钢铠地线分别引出,接地线截面分别不小于25mm2和10mm2,从热缩手套下引出时应互相绝缘,通过以上两项改进,就有条件在终端头处定期测量钢铠对地和钢铠对铜屏蔽的绝缘电阻,可间接反映电缆内、外护套有无损伤,从而可以判断电缆是否受潮。检测发现电缆铜屏蔽接地,在某变点所终端侧绝缘电阻为0.01M。电缆敷设示意图如图所示。进一步检测发现,故障点的位置在离变电所1973m的4号电缆接头上。把4号接头刨开,把接头内、外护套分别剥开
3、检查,发现造成铜屏蔽接地的原因是内、外护套搭接处密封不严,钢铠甲和铜屏蔽处均有潮气存在。针对故障原因,用喷灯对该接头进行充分排潮后,把铜屏蔽在接口处断开,分别遥测接头两侧铜屏蔽对地绝缘电阻,测量结果是:变电所侧为4.5M,终端侧为5M。由于处理及时,避免了事故发生。,.电缆护层故障 单芯XLPE电缆能否安全可靠地运行,与其护层能否安全可靠运行关系密切。电缆护层采用一端接地方式时,要求该电缆的护层必须绝缘良好。当电缆护层发生接地时,运行中电缆护层将受到交变磁场的作用,在铝波纹护层上将产生感应电压,使直接接地端和电缆护层的绝缘不良处产生“环流”。“环流”使铝波纹层发热,并使输送容量降低30%40%
4、;而且严重的可将金属护层烧穿,护层烧穿后将使电缆的主绝缘裸露在外,与地下(或空气中)的水分或潮气相接触,使绝缘层遭受破坏,最终导致绝缘击穿。,.线芯屏蔽层厚薄不均匀 电力电缆线芯在紧压过程中容易产生尖锐毛刺。随着运行电压升高,导体表面电场增大,毛刺尖端电场严重畸变,导致引发主绝缘树枝状放电。因此,3kV及以上的XLPE电力电缆均要求设计由半导电材料构成的线芯屏蔽层和绝缘屏蔽层。半导电线芯屏蔽层的主要作用是:均匀线芯表面电场、防止气隙、提高电缆局部放电电压、屏蔽线芯毛刺、抑制树枝引发和树枝状放电,还起热屏障作用。因此它直接影响电缆的安全运行和寿命。例如:,(1)某YJV-26/35型、3400m
5、m2的XLPE电缆投入运行8天后发生故障,电缆本体绝缘几乎全部烧融,铜芯均有过热退火痕迹,位于铜屏蔽接地处上方16mm和51mm两处的铜线芯被烧熔化为黄豆大小粒状,铜接线端子完好。(2)某YJV-26/35型、3400mm2的XLPE电缆敷设竣工后做直流耐压试验时,在距一端点约4.7m处发生击穿。现场解剖检查、分析两起故障电缆、起主绝缘和绝缘屏蔽层无明显制造质量问题,而线芯屏蔽层厚薄不均匀,最薄处厚度约0.67mm,最后处厚度约1.22mm,碳黑分散比较均匀,体积电阻率约为106cm。因此,可以判断:故障的原因是线芯屏蔽层比较薄、体积电阻率偏高,不足以屏蔽线芯毛刺或铜屑所引起的畸变电场尖端放电
6、,主绝缘迅速被破坏,最后导致电击穿。,塑料电缆的树枝放电老化,塑料绝缘电力电缆运行的可靠性,除绝缘材料本身特性不良外,其决定因素就是电缆绝缘结构的完善程度。在电缆绝缘层中恶化的电场将导致场致发射,引发电树枝、水树枝,最终使电缆绝缘层击穿。塑料电力电缆的运行寿命与其绝缘中树枝老化的现象密切相关,这是在20世界60年代和70年代被发现的。由于发现了塑料电缆击穿前的这种“预击穿”现象,引起世界各国电缆制造界的极大兴趣。,1.树枝老化简介 有机材料的树枝化是由于材料内部细微开裂造成的,开裂的细小通道如同冬天无树叶的树枝状有枝干、分枝、枝芽。“树枝”就是这种中空开裂现象的统称。实际上,它的形状已大大地超
7、越了“树枝”的概念。塑料电缆的树枝化放电现象也是固体介质击穿前漫长的先导击穿过程,在引发树枝萌芽之前已有漫长的诱导(诱发)期。树枝引发后,或者很快发展到固体击穿,或者经漫长的发展(老化)过程,最后导致固体介质击穿(电老化击穿)。树枝放电通常指树枝的发生、发展的全过程,也有特指管道细微开裂中的气体的局部放电。,各种有机材料中,管道细微开裂的引发,可以是原有亚微观裂纹的存在;或气隙、水分、化学杂质的存在;或者无任何裂纹存在,只是极高的场强导致冷发射电子,引发裂缝,这是很复杂的物理化学过程。从高场强处、气隙、含水的空洞、杂质等处引发树枝核心后,向三个方向的立体空间发展。一般是沿电力线方向,也有因材料
8、的各向异性而出现垂直电力线方向的树枝。这些树枝延伸发展到场强所至的对极(整个绝缘厚度),最后发生整体击穿。从引发树枝萌芽,到发展至对极的时间可以是几分钟、几十分钟、几年或十几年。,1.1 树枝放电的形成 树枝放电的引发和发展过程可分为以下四个阶段:(1)引发期:又称潜伏期或诱导期,它的长短表征树枝发生的难易程度。这是抑制树枝的主要阶段。(2)成长期:又称发展期,它表明树枝引发后的成长速度。耐树枝发展特性好的材料,树枝发展慢,即成长期长。(3)饱和期:当树枝发展到一定长度后,树枝停止发展,这段时间称为饱和期。饱和期的存在是由于树枝管道中有局部放电及高能电子轰击高聚物分子链,致使材料分解产生大量的
9、气体。随着这种效应的增强,细管中内部压力加大,按巴申定律,管道中放电电压将要提高。因而,在外界电压不变的情况下,树枝发展就可能停止。设法延长饱和期,是抑制树枝的另一重要方法。(4)间隙击穿前期:经过饱和期以后,气隙或树枝管道中因放电分解出的气体逐渐通过材料本身渗透、扩散而逸出,使管道中气体压力下降,按巴申定律,这时气隙的击穿电压下降,因而树枝又迅速发展。,1.2 树枝放电的分类与特点 在实际中存在的多种树枝放电形式可分为三大类:即电树枝、水树枝和化学树枝。,(1)电树枝。处于高场强的不连续材料界面(气隙、杂质、电缆内外半导电层界面)特别容易引发电树枝,电树枝往往在高场强集中的微裂纹转变为裂缝或
10、开裂处形成树枝萌芽,树枝管道连续、内空,有的材料树枝管道壁上附有炭粒。通常在长而细的电树枝管道中伴随着局部放电。典型的几种电树枝参见图1。,(2)水树枝。引发树枝的空隙中含有水分。水中运行的电缆、线芯进水的电缆、绝缘中含有水分的电缆容易引发水树枝。水树枝是在电场和水分同时存在的条件下产生的。但是,水树枝在比电树枝低得多的场强情况下就能引发。水树枝中没有局部放电现象。水树枝的种类也很多,对电缆的危害也很大。但是,水树枝具有消失和重现的特点。有的水树枝受热、干燥、抽真空等会消失形态,浸入热水中又会重现,水树枝消失时表明管道发生闭合,材料细微龟裂后又回弹,但未使结构分解。在实际电缆中,干法制造的交联
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电缆 树枝 放电 介绍

链接地址:https://www.31ppt.com/p-2697432.html