透水水泥混凝土的力学性能毕业设计外文资料翻译.doc
《透水水泥混凝土的力学性能毕业设计外文资料翻译.doc》由会员分享,可在线阅读,更多相关《透水水泥混凝土的力学性能毕业设计外文资料翻译.doc(19页珍藏版)》请在三一办公上搜索。
1、外文参考资料Mechanical properties of pervious cement concreteCHEN Yu1, WANG Ke-Jin2, LIANG Di11. School of Traffic and Transportation Engineering,Changsha University of Science and Technology, Changsha 410004, China;2.Department of Civil, Construction and Environmental Engineering, Iowa State University,
2、Ames, IA50010, USA Central South University Press and Springer-Verlag Berlin Heidelberg 2012 Abstract: Compressive and flexural strength, fracture energy, as well as fatigue property of pervious cement concrete with either supplementary cementitious materials (SCMs) or polymer intensified, were anal
3、yzed. Test results show that the strength development of SCM-modified pervious concrete (SPC) differs from that of polymer-intensified pervious concrete (PPC), and porosity has little effect on their strength growth. PPC has higher flexural strength and remarkably higher flexural-to-compressive stre
4、ngth ratio than SPC at the same porosity level. Results from fracture test of pervious concrete mixes with porosity around 19.5% show that the fracture energy increases with increasing the dosage of polymer, reflecting the ductile damage features rather than brittleness. PPC displays far longer fati
5、gue life than SPC for any given failure probability and at any stress level. It is proved that two-parameter Weibull probability function describes the flexural fatigue of pervious concrete.Key words: pervious concrete; strength; fracture; fatigue life1 IntroductionPervious cement concrete was a con
6、crete with continuous voids that were intentionally incorporated into concrete by blending with no or very little amount of fine aggregates. Cementitious materials were not enough to fill the voids among coarse aggregates with special particle-size distribution to make interconnected macro pores 12.
7、 The range of porosity that was commonly reported for pervious concrete utilized in pavement, was about 15%25% 34. The significantly reduced strength of conventional pervious concrete due to high porosity, not only limited its application in heavy traffic roads but also influenced the stability and
8、durability of the structures, because of,for example, susceptibility to frost damage and low resistance to chemicals. However, by using appropriatelyselected aggregates, silica fume (SF) or organic intensifiers, and by adjusting concrete mixing proportion, the mechanical properties of pervious concr
9、ete could be improved greatly 56. YANG and JIANG 7 showed that the use of SF and superplasticizer (SP) in pervious concrete could obviously enhance its strength. The results also indicated that SF had a better effect for improving the properties of pervious concrete than polymer when using with SP;
10、and it could obtain compressive strength of 50 MPa and flexural strength of 6 MPa. KEVERN 8 presented that the addition of polymer (styrene butadiene rubber) in pervious concrete improved its workability, strength, permeability and freeze-thaw resistance, resulting in higher strength at relatively l
11、ower cement contents and higher porosity. Fundamental information, including the effects of porosity, water-to-cement ratio, cement paste characteristic, volume fraction of coarse aggregates, size of coarse aggregates on pervious concrete strength, had been studied 3, 912. However, for the reason th
12、at the porosity played a key role in the functional and structural performances of pervious concretes 1314, there was still a need to understand more about the mechanical responses of pervious concretes proportioned for desired levels of porosities.Although it was possible to have widely different p
13、ore structure features for a given porosity, or similar pore structure features for varied porosities in pervious concrete, it was imperative to focus on the mechanical responses of pervious concrete at different designed porosities. However, compared with the related research on conventional concre
14、te, very limited study had been conducted on the fracture and fatigue behaviors of pervious concrete, which were especially important for pavement concrete subjected to heavy traffic and to severe seasonal temperature change.The presented work outlined the raw materials and mixing proportions to pro
15、duce high-strength supplementary cementitious material (SCM) modified pervious concrete (SPC) and polymer-intensified pervious concrete (PPC) at different porosities within the range of 15%25%. Then, the mechanical properties of pervious concrete, including the compressive and flexural strengths, fr
16、acture energy, as well as fatigue property, were investigated in details.2 Experiment program2.1 Raw materials and mixing proportionsType I Ordinary Portland Cement (OPC, with the details in Table 1) and granite aggregates were used for all pervious concrete mixtures. The combined aggregates,4.75 mm
17、 and 9.5 mm particles were chosen to prepare the mixtures. To cast SPC, fly ash (type C, FA), SF and SP were used; while SJ-601, the mixture of vinyl acetate ethylene copolymer (VAE) and acrylic emulsion, was added to produce PPC. Table 2 lists the main properties of SJ-601.Two series of testing spe
18、cimens were cast in accordance with the designated mixing proportions presented in Table 3, in which indicates the mass ratio of aggregate in 1 m3 concrete to the loose density after being densely vibrated. The percentages of FA and SF were the replacements of the same mass of OPC; while those of SP
19、 and SJ-601 were the additional dosages. It should be clarified that too much polymer blocked the valid pores and badly influenced the permeability of pervious concrete. SJ-601 dosage more than 12% was not recommended 1, 6.2.2 Test methodsThe strength tests were carried out according to GT/B 50081 2
20、002 (Standard for Test Method of Mechanical Properties in Ordinary Concrete).Strain gauges were stick at the mid-point on the bottom surface of beam specimen (150 mm 150 mm 550 mm), which sustained two-thirds symmetrical loading F. The corresponding strain was measured by XY digital recorder. was th
21、en translated into , which meant the mid-span deflection of beam specimen in accordance with Eq. (1). So, the enveloped area by F curve and X-axis was defined as W, fracture energy of concrete, which could be calculated by Eq. (2) 1516: (1) (2) Whereis the dynamic deflection of the mid-span beam; L
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 透水水泥混凝土的力学性能 毕业设计外文资料翻译 透水 水泥 混凝土 力学性能 毕业设计 外文 资料 翻译
链接地址:https://www.31ppt.com/p-2693314.html