桥梁裂缝产生的原因和处理措施.doc
《桥梁裂缝产生的原因和处理措施.doc》由会员分享,可在线阅读,更多相关《桥梁裂缝产生的原因和处理措施.doc(22页珍藏版)》请在三一办公上搜索。
1、 本科生毕业论文(设计)中文题目桥梁裂缝产生的原因和处理措施学生姓名 专业 土木工程 层次年级 学号 指导教师 职称 学习中心 成绩 摘 要 在桥梁施工过程中,因出现裂缝而影响混凝土外观甚至工程质量导致桥梁混凝土报废的情况屡见不鲜,给施工单位的名誉和经济都造成了很大损失,成为施工单位必须解决的重要问题之一。大量的工程实践和理论分析表明,在施工过程中如果采取一定的措施,很多裂缝是可以克服和控制的,为了进一步加强对桥梁混凝土裂缝的认识,尽量避免工程中出现危害较大的裂缝,对桥梁混凝土裂缝的种类和产生的原因作较全面的分析、总结,以方便施工找出控制裂缝的可行技术,达到防患于未然的作用。本文从混凝土桥梁施
2、工裂缝的成因、温度应力的分析、温度的控制和防止裂缝的措施、混凝土的早期养护、裂缝的防治措施、处理及修补等六个方面给予分析阐述、总结应用。为保证混凝土工程质量,防止开裂,提高混凝土的耐久性,正确使用外加剂也是减少开裂的措施之一。关键词:混凝土桥梁;裂缝;处理措施目 录第一章裂缝种类及原因41.1荷载引起的裂缝51.2温度变化引起的裂缝51.3收缩引起的裂缝61.4钢筋锈蚀引起的裂缝61.5施工工艺质量引起的裂缝71.6化学类裂缝8第二章 温度应力的分析92.1根据温度应力的形成过程可分为三个阶段92.2根据温度应力引起的原因可分为两类9第三章 裂缝的危害1031表面裂缝度桥梁结构的危害后果103
3、2裂缝对桥梁耐久的危害后果1033裂缝对桥梁结构强度的危害后果11第四章 温度的控制和防止裂缝的措施124.1控制温度的措施124.2改善约束条件的措施124.3正确使用外加剂施13第五章 混凝土的早期养护14第六章 裂缝的防治措施156.1材料的控制156.2温度的控制156.3非结构性裂缝防治措施15第七章 裂缝的处理及修补177.1损伤原因177.2加固方案177.3加固效果17第八章 结论与展望18参考文献19致 谢21第一章 裂缝种类及原因随着交通运输量的不断增加,交通荷载等级的不断提高,桥梁服役年限的不断延长,许多桥梁己渐渐不能适应现代交通的要求,使用性能恶化,安全性降低。此外不论
4、勘察、设计、施工、养护等方面存在缺陷或错误,还是受到气候作用、化学侵蚀引起结构老化,均会造成桥梁结构隐患,降低结构的可靠性。混凝土因其取材广泛、价格低廉、抗压强度高、可浇注成各种形状,并且耐火性好、不易风化、养护费用低,成为当今世界桥梁结构中使用最广泛的建筑材料。近年来,我国交通基础建设得到迅猛发展,各地兴建了大量的混凝土桥梁。但混凝土桥梁的开裂可以说是“常发病”和“多发病”,经常困扰着桥梁工程技术人员,也是世界各国建筑界的热门话题,在这方面我国学者所做的主要工作有: 钢筋与混凝土结合面的粘结滑移性能的试验研究; 钢筋与混凝土劈裂粘结破坏和周期反复荷载下局部粘结滑移关系及斜压杆粘结模型的试验研
5、究; 钢筋粘结锚固机理的试验研究等。 混凝土的抗拉强度很低,拉应力引起开裂,混凝土裂缝对结构构件基本性能的影响是很大的,裂缝的处理始终是混凝土桥梁结构有限元分析的关键问题。目前有人已提出过几种不同的模式来处理钢筋混凝土有限元分析中的裂缝问题,各种模式的适用性随着计算机技术的不断发展,在不同的时期,有其各自的优缺点。较早建成的一些公路桥梁技术标准低、通行能力差,桥梁往往成为公路交通运输的“瓶颈”,严重影响了整条线路的畅通,也成为交通事故多发地点。从目前我国基本建设投资来看,由于资金的短缺,除了建设一定数量的新桥外,如何充分利用现有桥梁,对其进行有效的加固维修,是摆在桥梁工程技术人员面前的一大课题
6、。因此,对桥梁结构的维修、加固和补强的研究及应用,改善桥梁的使用性能和延长桥梁的使用寿命,己引起了世界性的关注,这是一项具有重要的理论和现实意义的研究课题2。近年来,桥梁加固越来越受到全球各国工程界的高度重视,被提到刻不容缓的议事日程上来。桥梁建设的重点已经从新桥建设转移到旧桥的加固和改造方面,很显然,现役桥梁出现裂缝的情况还是比较严重的。因此,若能在混凝土结构施工之前和施工之后对混凝土是否开裂和可能达到的开裂程度进行控制,无疑对于混凝土结构质量控制有着重要的意义。另外,对于已经开裂的混凝土结构,若能迅速准确找到混凝土开裂的原因,采取有效措施进行修补与加固,不仅节省投资,而且有很好的经济效益和
7、社会效益。混凝土施工裂缝的成因复杂、繁多,有时多种因素相互影响,每一条裂缝均有其产生的一种或几种主要因素。根据混凝土桥梁裂缝的种类,就其产生的原因,大致可划分为以下几种。1.1荷载引起的裂缝荷载裂缝是混凝土桥梁在静、动荷载及次应力作用下产生的裂缝,主要分直接应力裂缝和次应力裂缝。直接应力裂缝是指混凝土桥梁在由外荷载引起的直接应力产生的裂缝;次应力裂缝是指混凝土桥梁由外荷载引起的次生应力产生的裂缝。在工程实践中,由荷载引起的裂缝占总混凝土桥梁裂缝的20左右。荷载裂缝产生的原因主要有:在设计计算阶段,计算模型不合理;设计断面不足;结构计算时部分荷载漏算;构造处理不当,钢筋设置偏少或布置错误;设计图
8、纸交代不清等。在施工阶段,不加限制地堆放施工机具、材料;不了解预制结构结构受力特点,随意翻身、起吊、运输、安装;不按设计图纸施工,擅自更改结构施工顺序,改变结构受力模式;不对结构做机器振动下的疲劳强度验算等。在桥梁使用阶段,超出设计载荷的重型车辆频繁过桥;受船舶撞击等。次应力裂缝是产生荷载裂缝的最常见原因。次应力裂缝多属张拉、劈裂、剪切性质,按常规一般不计算,但目前次应力裂缝也是可以做到合理验算的。在设计上,应注意避免结构突变(或断面突变),当不能回避时,应做局部处理,如转角处做圆角,突变处做成渐变过渡,同时加强构造配筋,转角处增配斜向钢筋,对于较大孔洞有条件时可在周边设置护边角钢。混凝土桥梁
9、的荷载裂缝特征依荷载不同而呈现不同特点,其分布规律是沿主拉应力方向开展,其走向与主拉应力方向垂直。荷载裂缝多出现在受拉区、受剪区或振动严重部位。如受压区出现起皮或有沿受压方向的短裂缝,即表明混凝土桥梁达到承载力极限,其原因多是截面尺寸偏小。根据混凝土桥梁结构的不同受力方式,产生的裂缝特征主要有中心受拉、中心受压、受弯、大偏心受压、小偏心受压、受剪、受扭、受冲切和局部受压。1.2温度变化引起的裂缝混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土将发生变形,若变形遭到约束,则在结构内将产生应力。当应力超过混凝土抗拉强度时即产生温度裂缝。 在某些大跨径桥梁中,温度应力可以达到甚至超出
10、荷载应力。温度裂缝区别于其他裂缝的最主要特征是随温度变化而扩张或合拢。因此研究引起混凝土桥梁温度变化的因素,对减少温度裂缝至关重要。引起混凝土桥梁温度变化的主要因素有:年温差、日照、骤然降温、水化热、蒸汽养护或冬季施工措施不当等。其中日照和骤然降温是导致混凝土桥梁温度裂缝的最常见原因。尤其对大体积混凝土桥梁施工中的温度监控,是控制温度裂缝产生的关键。引起温度变化的主要施工因素有:水化热。出现在施工过程中,大体积混凝土(厚度超过2.0m)浇筑之后由于水泥水化放热,致使内部温度很高,内外温差太大,导致表面出现裂缝。施工中应根据实际情况,尽量选择水化热低的水泥品种,限制水泥单位用量,减少骨料入模温度
11、,降低内外温差,并缓慢降温,必要时可采用循环冷却系统进行内部散热,或采用薄层连续浇筑以加快散热。蒸汽养护或冬季施工时施工措施不当,混凝土骤冷骤热,内外温度不均,易出现裂缝。1.3收缩引起的裂缝在混凝土桥梁工程中,混凝土因收缩所引起的裂缝是最常见的。在混凝土收缩种类中,塑性收缩和缩水收缩是发生混凝土体积变形的主要原因,另外还有自生收缩和炭化收缩。混凝土收缩裂缝的特点是大部分属表面裂缝,裂缝宽度较细,且纵横交错,成龟裂状,形状没有任何规律。塑性收缩发生在施工过程中、混凝土浇注后4 5h左右,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,此时混凝土
12、尚未硬化。塑性收缩所产生量级可达1左右。在骨料下沉过程中若受到钢筋阻挡,便形成沿钢筋方向的裂缝。在构件竖向变截面处如T梁、箱梁腹板与顶底板交接处,因硬化前沉实不均匀将发生表面的顺腹板方向裂缝。缩水收缩(干缩)。混凝土结硬以后,随着表层水分逐步蒸发,湿度逐步降低,混凝土体积减小,称为缩水收缩(干缩)。因混凝土表层水分损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收缩,表面收缩变形受到内部混凝土的约束,致使表面混凝土承受拉力。当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。混凝土硬化后收缩主要是缩水收缩。自生收缩。自生收缩是混凝土在硬化过程中,水泥与水发生水化反应,这种收缩与外界
13、湿度无关,且可以是正的(即收缩,如普通硅酸盐水泥混凝土),也可以是负的(即膨胀,如矿渣水泥混凝土与粉煤灰水泥混凝土)。炭化收缩。大气中的CO 与水泥的水化物发生化学反应引起的收缩变形。炭化收缩只有在湿度50 左右才能发生,且随C0 浓度的增加而加快。1.4钢筋锈蚀引起的裂缝由于混凝土质量较差或保护层厚度不足,混凝土保护层受二氧化碳侵蚀炭化至钢筋表面,使钢筋周围混凝土碱度降低,或由于氯化物介入,钢筋周围氯离子含量较高,均可引起钢筋表面氧化膜破坏。钢筋中铁离子与侵入到混凝土中的氧气和水分发生锈蚀反应,其锈蚀物氢氧化铁体积比原来增长约2-4倍,从而对周围混凝土产生膨胀应力,导致保护层混凝土开裂、剥离
14、,沿钢筋纵向产生裂缝,并有锈迹渗透到混凝土表面。由于锈蚀,使得钢筋有效断面面积减小,钢筋与混凝土握裹力削弱,结构承载力下降,并将诱发其它形式的裂缝,加剧钢筋锈蚀,导致结构破坏。1.5施工工艺质量引起的裂缝在混凝土结构浇筑、构件制作、起模、运输、堆放、拼装及吊装过程中,若施工工艺不合理、施工质量低劣,容易产生纵向的、横向的、斜向的、竖向的、水平的、表面的、深进的和贯穿的各种裂缝,特别是细长薄壁结构更容易出现。裂缝出现的部位和走向、裂缝宽度因产生的原因而异,比较典型而常见的有:混凝土保护层过厚,或乱踩已绑扎的上层钢筋,使承受负弯矩的受力筋保护层加厚,导致构件的有效高度减小,形成与受力钢筋垂直方向的
15、裂缝。混凝土振捣不密实、不均匀,出现蜂窝、麻面、空洞,导致钢筋锈蚀或其他荷载裂缝的起源点。混凝土浇筑过快,混凝土流动性较低,在硬化前因混凝土沉实不足,硬化后沉实过大,容易在浇筑数小时后发生裂缝,即塑性收缩裂缝。混凝土搅拌、运输时间过长,使水分蒸发过多,引起混凝土塌落度过低,使得在混凝土体积上出现不规则的收缩裂缝。混凝土初期养护时急剧干燥,使得混凝土与大气接触的表面上出现不规则的收缩裂缝。用泵送混凝土施工时,为保证混凝土的流动性,增加水和水泥用量,或因其他原因加大了水灰比,导致混凝土凝结硬化时收缩量增加。使得混凝土体积上出现不规则裂缝。混凝土分层或分段浇筑时,接头部位处理不好,易在新旧混凝土和施
16、工缝之间出现裂缝。如混凝土分层浇筑时,后浇混凝土因停电、下雨等原因未能在前浇混凝土初凝时浇筑,引起层面间的水平裂缝;采用分段现浇时,先浇混凝土接触面凿毛、清洗不好,新旧混凝土之间黏结力小,或后浇混凝土养护不到位,导致混凝土收缩而引起裂缝。混凝土早期受冻,使构件表面出现裂纹,或局部剥落,或脱模后出现空鼓现象。施工时模板刚度不足,在浇筑混凝土时,由于侧向压力的作用使得模板变形,产生与模板变形一致的裂缝。施工时拆模过早,混凝土强度不足,使得构件在自重或荷载作用下产生裂缝。施工前对支架压实不足或支架刚度不足,浇筑混凝土后支架不均匀下沉,导致混凝土出现裂缝。装配式结构,在构件运输、堆放时,支承垫木不在一
17、条垂直线上,或悬臂过长,或运输过程中剧烈颠撞;吊装时吊点位置不当,T梁等侧向刚度较小的构件,侧向无可靠的加固措施等,均可能产生裂缝。安装顺序不正确,对产生的后果认识不足,导致产生裂缝。如钢筋混凝土连续梁满堂支架现浇施工时,钢筋混凝土墙式护栏若与主梁同时浇筑,拆架后墙式护栏往往产生裂缝。拆架后再浇筑护栏,则裂缝不易出现。施工质量控制差。任意套用混凝土配合比,水、砂石、水泥材料计量不准,结果造成混凝土强度不足和其他性能(和易性、密实度)下降,导致结构开裂。1.6化学类裂缝化学类裂缝主要包括因水泥安定性及碱骨料等化学反应产生,这类裂缝比较容易预防。配制混凝土采用质量合格的水泥、砂、骨料、拌和水及外加
18、剂等施工材料。在工程实践中必须对骨料进行碱活性检验,采用对工程无害的材料,同时使用含碱量合格的水泥品种。另外,因使用原因(外界因素)构筑物基础不均匀沉降,产生沉降裂缝。使用荷载超负。随意凿洞等引起裂缝。周围环境影响,酸、碱、盐等对构筑物的侵蚀,引起裂缝。意外事件,火灾、轻度地震等也会引起构筑物的裂缝。第二章 温度应力的分析2.1根据温度应力的形成过程可分为三个阶段早期:自浇筑混凝土开始至水泥放热基本结束,一般约30天。这个阶段的两个特征,一是水泥放出大量的水化热,二是混凝上弹性模量的急剧变化。由于弹性模量的变化,这一时期在混凝土内形成残余应力。 中期:自水泥放热作用基本结束时起至混凝土冷却到稳
19、定温度时止,这个时期中,温度应力主要是由于混凝土的冷却及外界气温变化所引起,这些应力与早期形成的残余应力相叠加,在此期间混凝土的弹性模量变化不大。 晚期:混凝土完全冷却以后的运转时期。温度应力主要是外界气温变化所引起,这些应力与前两种的残余应力相迭加。2.2根据温度应力引起的原因可分为两类自生应力:边界上没有任何约束或完全静止的结构,如果内部温度是非线性分布的,由于结构本身互相约束而出现的温度应力。例如,桥梁墩身,结构尺寸相对较大,混凝土冷却时表面温度低,内部温度高,在表面出现拉应力,在中间出现压应力。 约束应力:结构的全部或部分边界受到外界的约束,不能自由变形而引起的应力。如箱梁顶板混凝土和
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 桥梁 裂缝 产生 原因 处理 措施
链接地址:https://www.31ppt.com/p-2653141.html