统计热力学-波尔兹曼方程.ppt
《统计热力学-波尔兹曼方程.ppt》由会员分享,可在线阅读,更多相关《统计热力学-波尔兹曼方程.ppt(27页珍藏版)》请在三一办公上搜索。
1、统计热力学电教课之四,10.3 玻尔兹曼方程 Boltzmann Equation,第十章 非平衡态统计简单理论,采用弛豫时间近似(Relaxation time approximation),简化碰撞贡献计算,从而简化玻尔兹曼积分微分方程,导出较简便的玻尔兹曼方程.简要讨论其应用,Boltzmann EquationViscous Phenomenon of Gases Electric conductivity of Metals,统计热力学电教课之四,1玻尔兹曼方程 Boltzmann Equation系统未达平衡态,其局部可(近似)达平衡 局域平衡f(0)局域平衡的麦氏分布(与平衡部分
2、整体运动有关)各局域平衡部分通过碰撞相互影响,最后趋向大平衡:一致的f(0),过程是缓慢的,可近似认为,u0、v0、w0 整体运动速度三分量,统计热力学电教课之四,Boltzmann 的弛豫时间法设想分布函数时间变化率的碰撞贡献项与 f 对平衡分布f(0)的偏离成正比:,弛豫时间,Boltzmann 积分微分方程,求解困难,应简化之,统计热力学电教课之四,注意到 f(0)/t 0,有,经0时间,分布函数对平衡值偏离减至最初的1/e粗略认为:0恢复平衡所需时间一般0 与速度有关,进一步化简,假定为常数 0 与两次碰撞间平均时间(频率之倒数)同量级,弛豫时间0 的物理意义:,统计热力学电教课之四,
3、玻尔兹曼积分微分方程成为,Boltzmann方程,稳恒态(steady state),亦称Boltzmann方程,*在不均匀、有外场条件下,细致平衡原理仍正确。细致平衡时,漂移贡献各部分相消而为零在漂移贡献非零时,虽细致平衡条件不满足,但分布不变 稳恒态,漂移与碰撞贡献相互抵消,统计热力学电教课之四,2气体粘滞现象Viscous Phenomenon of Gases,u0=w0=0,v0=v0(x)沿 x 方向有梯度(图),以平面x=x0为界x x0 正方;x x0 反方,Newton粘滞定律单位面积正方作用于负方的胁强(沿y方的力),粘滞系数,统计热力学电教课之四,粘滞力的微观机制:分子交
4、流使动量传递不均衡,表现为粘滞力,单位时间由正方“跑入”负方的分子数 d=fudv携带动量(沿y方)mvfudv,正方传给负方的总动量(沿y方),负方传给正方的总动量(沿y方),相减得,统计热力学电教课之四,稳恒态,代入Boltzmann方程(为简单,考虑无外场情形)有,速度梯度不大,设,解出f(1)代入,统计热力学电教课之四,代入胁强的公式得,与粘滞定律比较,与实验吻合,统计热力学电教课之四,3金属电导率Electric conductivity of Metals,恒定均匀电场中的金属中电子的输运问题,设电场沿z 方向,场强 z根据欧姆定律,Electric conductivity,统计
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 统计 热力学 波尔兹曼 方程
链接地址:https://www.31ppt.com/p-2549605.html