《红外吸收光谱法.ppt》由会员分享,可在线阅读,更多相关《红外吸收光谱法.ppt(87页珍藏版)》请在三一办公上搜索。
1、12:02:03,第七章 红外吸收光谱法,一、概述 introduction二、红外吸收光谱产生的条件condition of Infrared absorption spectroscopy三、分子中基团的基本振动形式basic vibration of the group in molecular四、红外吸收峰强度intensity of infrared absorption bend,第一节 红外光谱分析基本原理,infrared absorption spec-troscopy,IR,principle of IR,12:02:03,分子中基团的振动和转动能级跃迁产生:振-转光谱,一
2、、概述 introduction,辐射分子振动能级跃迁红外光谱官能团分子结构,近红外区中红外区远红外区,12:02:03,12:02:03,红外光谱图:纵坐标为吸收强度,横坐标为波长(m)和波数1/单位:cm-1可以用峰数,峰位,峰形,峰强来描述。,应用:有机化合物的结构解析。定性:基团的特征吸收频率;定量:特征峰的强度;,红外光谱与有机化合物结构,12:02:03,二、红外吸收光谱产生的条件 condition of Infrared absorption spectroscopy,满足两个条件:(1)辐射应具有能满足物质产生振动跃迁所需的能量;(2)辐射与物质间有相互偶合作用。,对称分子:
3、没有偶极矩,辐射不能引起共振,无红外活性。如:N2、O2、Cl2 等。非对称分子:有偶极矩,红外活性。偶极子在交变电场中的作用示意图,(动画),12:02:03,表 某些键的伸缩力常数(毫达因/埃),键类型 CC C=C C C 力常数 15 17 9.5 9.9 4.5 5.6峰位 4.5m 6.0 m 7.0 m 化学键键强越强(即键的力常数K越大)原子折合质量越小,化学键的振动频率越大,吸收峰将出现在高波数区。,12:02:03,三、分子中基团的基本振动形式 basic vibration of the group in molecular,1两类基本振动形式伸缩振动 亚甲基:,变形振动
4、 亚甲基,(动画),12:02:03,甲基的振动形式,伸缩振动 甲基:,变形振动 甲基,对称s(CH3)1380-1 不对称as(CH3)1460-1,对称 不对称s(CH3)as(CH3)2870-1 2960-1,12:02:03,例水分子(非对称分子),峰位、峰数与峰强,(1)峰位 化学键的力常数K越大,原子折合质量越小,键的振动频率越大,吸收峰将出现在高波数区(短波长区);反之,出现在低波数区(高波长区)。,(2)峰数 峰数与分子自由度有关。无瞬间偶基距变化时,无红外吸收。,(动画),12:02:03,峰位、峰数与峰强,例2CO2分子(有一种振动无红外活性),(4)由基态跃迁到第一激发
5、态,产生一个强的吸收峰,基频峰;(5)由基态直接跃迁到第二激发态,产生一个弱的吸收峰,倍频峰;,(3)瞬间偶基距变化大,吸收峰强;键两端原子电负性相差越大(极性越大),吸收峰越强;,(动画),12:02:03,(CH3)1460 cm-1,1375 cm-1。(CH3)2930 cm-1,2850cm-1。,12:02:03,四、红外吸收峰强度 intensity of Infrared absorption bend,问题:C=O 强;C=C 弱;为什么?吸收峰强度跃迁几率偶极矩变化吸收峰强度 偶极矩的平方偶极矩变化结构对称性;对称性差偶极矩变化大吸收峰强度大符号:s(强);m(中);w(弱
6、)红外吸收峰强度比紫外吸收峰小23个数量级;,12:02:03,第七章 红外吸收光谱法,一、红外光谱的基团频率group frequency in IR二、分子结构与吸收峰molecular structure and absorption peaks三、影响峰位移的因素factors influenced peak shift 四、不饱和度degree of unsaturation,第二节 红外光谱与分子结构,infrared absorption spec-troscopy,IR,infrared spectroscopy and molecular structure,12:02:03
7、,一、红外吸收光谱的特征性 group frequency in IR,与一定结构单元相联系的、在一定范围内出现的化学键振动频率基团特征频率(特征峰);例:2800 3000 cm-1 CH3 特征峰;1600 1850 cm-1 C=O 特征峰;基团所处化学环境不同,特征峰出现位置变化:CH2COCH2 1715 cm-1 酮CH2COO 1735 cm-1 酯CH2CONH 1680 cm-1 酰胺,12:02:03,红外光谱信息区,常见的有机化合物基团频率出现的范围:4000 670 cm-1依据基团的振动形式,分为四个区:(1)4000 2500 cm-1 XH伸缩振动区(X=O,N,
8、C,S)(2)2500 1900 cm-1 三键,累积双键伸缩振动区,(3)1900 1200 cm-1 双键伸缩振动区(4)1200 670 cm-1 XY伸缩,XH变形振动区,12:02:03,二、分子结构与吸收峰 molecular structure and absorption peaks,1 XH伸缩振动区(4000 2500 cm-1)(1)OH 3650 3200 cm-1 确定 醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐,强吸收;当浓度较大时,发生缔合作用,峰形较宽。,注意区分NH伸缩振动:3500 3100 cm-1,12:02:03,(3)不饱和碳原子上的
9、=CH(CH)苯环上的CH 3030 cm-1=CH 3010 2260 cm-1 CH 3300 cm-1,(2)饱和碳原子上的CH,3000 cm-1 以上,CH3 2960 cm-1 反对称伸缩振动 2870 cm-1 对称伸缩振动 CH2 2930 cm-1 反对称伸缩振动 2850 cm-1 对称伸缩振动 CH 2890 cm-1 弱吸收,3000 cm-1 以下,12:02:03,2 叁键(C C)伸缩振动区(2500 1900 cm-1),在该区域出现的峰较少;(1)RC CH(2100 2140 cm-1)RC CR(2190 2260 cm-1)R=R 时,无红外活性(2)R
10、C N(2100 2140 cm-1)非共轭 2240 2260 cm-1 共轭 2220 2230 cm-1 仅含C、H、N时:峰较强、尖锐;有O原子存在时;O越靠近C N,峰越弱;,12:02:03,3 双键伸缩振动区(1900 1200 cm-1),(1)RC=CR 1620 1680 cm-1 强度弱,R=R(对称)时,无红外活性。(2)单核芳烃 的C=C键伸缩振动(1626 1650 cm-1),12:02:03,苯衍生物的C=C,苯衍生物在 1650 2000 cm-1 出现 C-H和C=C键的面内变形振动的泛频吸收(强度弱),可用来判断取代基位置。,12:02:03,(3)C=O
11、(1850 1600 cm-1)碳氧双键的特征峰,强度大,峰尖锐。,饱和醛(酮)1740-1720 cm-1;强、尖;不饱和向低波移动;醛,酮的区分?,12:02:03,酸酐的C=O,双吸收峰:18201750 cm-1,两个羰基振动偶合裂分;线性酸酐:两吸收峰高度接近,高波数峰稍强;环形结构:低波数峰强;羧酸的C=O 18201750 cm-1,氢键,二分子缔合体;,12:02:03,4.XY,XH 变形振动区 1650 cm-1,指纹区(1350 650 cm-1),较复杂。C-H,N-H的变形振动;C-O,C-X的伸缩振动;C-C骨架振动等。精细结构的区分。顺、反结构区分;,12:02:
12、03,基团吸收带数据,12:02:03,常见基团的红外吸收带,特征区,指纹区,12:02:03,1内部因素(1)电子效应a诱导效应:吸电子基团使吸收峰向高频方向移动(兰移),三、影响峰位变化的因素 molecular structure and absorption peaks,化学键的振动频率不仅与其性质有关,还受分子的内部结构和外部因素影响。相同基团的特征吸收并不总在一个固定频率上。,R-COR C=0 1715cm-1;R-COH C=0 1730cm-1;R-COCl C=0 1800cm-1;R-COF C=0 1920cm-1;F-COF C=0 1928cm-1;R-CONH2
13、C=0 1920cm-1;,12:02:03,共轭效应,12:02:03,()空间效应,3060-3030 cm-1,2900-2800 cm-1,空间效应:场效应;空间位阻;环张力,12:02:03,2.氢键效应,(分子内氢键;分子间氢键):对峰位,峰强产生极明显影响,使伸缩振动频率向低波数方向移动,12:02:03,四、不饱和度 degree of unsaturation,定义:不饱和度是指分子结构中达到饱和所缺一价元素的“对”数。如:乙烯变成饱和烷烃需要两个氢原子,不饱和度为1。计算:若分子中仅含一,二,三,四价元素(H,O,N,C),则可按下式进行不饱和度的计算:=(2+2n4+n3
14、 n1)/2 n4,n3,n1 分别为分子中四价,三价,一价元素数目。作用:由分子的不饱和度可以推断分子中含有双键,三键,环,芳环的数目,验证谱图解析的正确性。例:C9H8O2=(2+29 8)/2=6,12:02:03,第七章 红外吸收光谱法,一、仪器类型与结构types and structure of instruments二、制样方法sampling methods三、联用技术hyphenated technology,第三节 红外分光光度计,infrared absorption spectrometer,infrared absorption spec-troscopy,IR,12
15、:02:03,一、仪器类型与结构 types and structure of instruments,两种类型:色散型 干涉型(傅立叶变换红外光谱仪),12:02:03,1.内部结构,Nicolet公司的AVATAR 360 FT-IR,12:02:03,2.傅里叶变换红外光谱仪结构框图,干涉仪,光源,样品室,检测器,显示器,绘图仪,计算机,干涉图,光谱图,FTS,(动画),12:02:03,3.傅立叶变换红外光谱仪的原理与特点,光源发出的辐射经干涉仪转变为干涉光,通过试样后,包含的光信息需要经过数学上的傅立叶变换解析成普通的谱图。特点:(1)扫描速度极快(1s);适合仪器联用;(2)不需要
16、分光,信号强,灵敏度很高;(3)仪器小巧。,12:02:03,傅里叶变换红外光谱仪工作原理图,(动画),12:02:03,迈克尔干涉仪工作原理图,(动画),12:02:03,4.色散型红外光谱仪主要部件,(1)光源 能斯特灯:氧化锆、氧化钇和氧化钍烧结制成的中空或实心圆棒,直径1-3 mm,长20-50mm;室温下,非导体,使用前预热到800 C;特点:发光强度大;寿命0.5-1年;硅碳棒:两端粗,中间细;直径5 mm,长20-50mm;不需预热;两端需用水冷却;(2)单色器 光栅;傅立叶变换红外光谱仪不需要分光;,12:02:03,(3)检测器 真空热电偶;不同导体构成回路时的温差电现象涂黑
17、金箔接受红外辐射;傅立叶变换红外光谱仪采用热释电(TGS)和碲镉汞(MCT)检测器;TGS:硫酸三苷肽单晶为热检测元件;极化效应与温度有关,温度高表面电荷减少(热释电);响应速度快;高速扫描;,12:02:03,二、制样方法 sampling methods,1)气体气体池,2)液体:,液膜法难挥发液体(BP80C)溶液法液体池,溶剂:CCl4,CS2常用。,3)固体:,研糊法(液体石腊法)KBR压片法薄膜法,12:02:03,三、联用技术 hyphenated technology,GC/FTIR(气相色谱红外光谱联用),LC/FTIR(液相色谱红外光谱联用),PAS/FTIR(光声红外光谱
18、),MIC/FTIR(显微红外光谱)微量及微区分析,12:02:03,第七章 红外吸收光谱分析法,一、红外谱图解析analysis of infrared spectrograph二、未知物结构确定structure determination of compounds,第四节 红外谱图解析,infrared absorption spec-troscopy,IR,analysis of infrared spectrograph,12:02:03,一、红外谱图解析 analysis of infrared spectrograph,1烷烃(CH3,CH2,CH)(CC,CH),-(CH2)n
19、-n,CH2 s1465 cm-1,CH2 r 720 cm-1(水平摇摆),重叠,12:02:03,a)由于支链的引入,使CH3的对称变形振动发生变化。b)CC骨架振动明显,12:02:03,c)CH2面外变形振动(CH2)n,证明长碳链的存在。,n=1 770785 cm-1(中)n=2 740 750 cm-1(中)n=3 730 740 cm-1(中)n 722 cm-1(中强),d)CH2和CH3的相对含量也可以由1460 cm-1和1380 cm-1的峰 强度估算强度,12:02:03,12:02:03,2.烯烃,炔烃,a)C-H 伸缩振动(3000 cm-1),12:02:03,
20、b)C=C 伸缩振动(1680-1630 cm-1),1660cm-1,分界线,12:02:03,分界线1660cm-1 顺强,反弱 四取代(不与O,N等相连)无(C=C)峰 端烯的强度强 共轭使(C=C)下降20-30 cm-1,2140-2100cm-1(弱)2260-2190 cm-1(弱),总结,12:02:03,c)C-H 变形振动(1000-700 cm-1),面内变形(=C-H)1400-1420 cm-1(弱)面外变形(=C-H)1000-700 cm-1(有价值),12:02:03,谱图,12:02:03,12:02:03,对比,烯烃顺反异构体,12:02:03,3.醇(OH
21、)OH,CO,a)-OH 伸缩振动(3600 cm-1)b)碳氧伸缩振动(1100 cm-1),12:02:03,OH基团特性,双分子缔合(二聚体)3550-3450 cm-1多分子缔合(多聚体)3400-3200 cm-1,分子内氢键:,分子间氢键:,多元醇(如1,2-二醇)3600-3500 cm-1螯合键(和C=O,NO2等)3200-3500 cm-1多分子缔合(多聚体)3400-3200 cm-1,分子间氢键随浓度而变,而分子内氢键不随浓度而变。,水(溶液)3710 cm-1水(固体)3300cm-1结晶水 3600-3450 cm-1,12:02:03,3515cm-1,3640c
22、m-1,3350cm-1,乙醇在四氯化碳中不同浓度的IR图,2950cm-1,2895 cm-1,12:02:03,12:02:03,12:02:03,脂族和环的C-O-C as 1150-1070cm-1,芳族和乙烯基的=C-O-C,as 1275-1200cm-1(1250cm-1),s 1075-1020cm-1,4.醚(COC),脂族 R-OCH3 s(CH3)2830-2815cm-1 芳族 Ar-OCH3 s(CH3)2850cm-1,12:02:03,5醛、酮,12:02:03,醛,12:02:03,12:02:03,6羧酸及其衍生物,羧酸的红外光谱图,12:02:03,酰胺的红
23、外光谱图,12:02:03,不同酰胺吸收峰数据,12:02:03,酸酐和酰氯的红外光谱图,12:02:03,氰基化合物的红外光谱图,CN=2275-2220cm-1,12:02:03,硝基化合物的红外光谱图,AS(N=O)=1565-1545cm-1,S(N=O)=1385-1350cm-1,脂肪族,芳香族,S(N=O)=1365-1290cm-1,AS(N=O)=1550-1500cm-1,12:02:03,二、未知物结构确定structure determination of compounds,1.未知物,12:02:03,2.推测C4H8O2的结构,解:1)=1-8/2+4=1 2)峰
24、归属 3)可能的结构,12:02:03,3.推测C8H8纯液体,解:1)=1-8/2+8=52)峰归属 3)可能的结构,12:02:03,4.C8H7N,确定结构,解:1)=1-(1-7)/2+8=6 2)峰归属 3)可能的结构,12:02:03,第七章 红外吸收光谱法,一、拉曼光谱基本原理principle of Raman spectroscopy二、拉曼光谱的应用applications of Raman spectroscopy 三、激光拉曼光谱仪laser Raman spectroscopy,第五节 激光拉曼光谱分析法,infrared absorption spectroscop
25、y,IR,laser Raman spectroscopy,12:02:03,一、激光拉曼光谱基本原理principle of Raman spectroscopy,Rayleigh散射:弹性碰撞;无能量交换,仅改变方向;Raman散射:非弹性碰撞;方向改变且有能量交换;,Rayleigh散射,Raman散射,E0基态,E1振动激发态;E0+h0,E1+h0 激发虚态;获得能量后,跃迁到激发虚态.(1928年印度物理学家Raman C V 发现;1960年快速发展),12:02:03,基本原理,1.Raman散射Raman散射的两种跃迁能量差:E=h(0-)产生stokes线;强;基态分子多;
26、E=h(0+)产生反stokes线;弱;Raman位移:Raman散射光与入射光频率差;,12:02:03,2.Raman位移,对不同物质:不同;对同一物质:与入射光频率无关;表征分子振-转能级的特征物理量;定性与结构分析的依据;Raman散射的产生:光电场E中,分子产生诱导偶极距=E 分子极化率;,12:02:03,3.红外活性和拉曼活性振动,红外活性振动 永久偶极矩;极性基团;瞬间偶极矩;非对称分子;,红外活性振动伴有偶极矩变化的振动可以产生红外吸收谱带.拉曼活性振动 诱导偶极矩=E 非极性基团,对称分子;拉曼活性振动伴随有极化率变化的振动。对称分子:对称振动拉曼活性。不对称振动红外活性,
27、12:02:03,4.红外与拉曼谱图对比,红外光谱:基团;拉曼光谱:分子骨架测定;,12:02:03,红外与拉曼谱图对比,12:02:03,对称中心分子CO2,CS2等,选律不相容。无对称中心分子(例如SO2等),三种振动既是红外活性振动,又是拉曼活性振动。,5.选律,振动自由度:3N-4=4,拉曼光谱源于极化率变化,红外光谱源于偶极矩变化,12:02:03,6.拉曼光谱与红外光谱分析方法比较,12:02:03,二、拉曼光谱的应用 applications of Raman spectroscopy,由拉曼光谱可以获得有机化合物的各种结构信息:,2)红外光谱中,由C N,C=S,S-H伸缩振动
28、产生的谱带一般较弱或强度可变,而在拉曼光谱中则是强谱带。,3)环状化合物的对称呼吸振动常常是最强的拉曼谱带。,1)同种分子的非极性键S-S,C=C,N=N,CC产生强拉曼谱带,随单键双键三键谱带强度增加。,12:02:03,4)在拉曼光谱中,X=Y=Z,C=N=C,O=C=O-这类键的对称伸缩振动是强谱带,反这类键的对称伸缩振动是弱谱带。红外光谱与此相反。,5)C-C伸缩振动在拉曼光谱中是强谱带。,6)醇和烷烃的拉曼光谱是相似的:I.C-O键与C-C键的力常数或键的强度没有很大差别。II.羟基和甲基的质量仅相差2单位。III.与C-H和N-H谱带比较,O-H拉曼谱带较弱。,12:02:03,2
29、941,2927cm-1 ASCH2,2854cm-1 SCH2,1029cm-1(C-C),803 cm-1环呼吸,1444,1267 cm-1 CH2,12:02:03,3060cm-1r-H),1600,1587cm-1 c=c)苯环,1000 cm-1环呼吸,787 cm-1环变形,1039,1022cm-1单取代,12:02:03,三、激光Raman光谱仪 laser Raman spectroscopy,激光光源:He-Ne激光器,波长632.8nm;,Ar激光器,波长514.5nm,488.0nm;散射强度1/4 单色器:光栅,多单色器;检测器:光电倍增管,光子计数器;,12:02:03,傅立叶变换-拉曼光谱仪,FT-Raman spectroscopy光源:Nd-YAG钇铝石榴石激光器(1.064m);检测器:高灵敏度的铟镓砷探头;特点:(1)避免了荧光干扰;(2)精度高;(3)消除了瑞利谱线;(4)测量速度快。,
链接地址:https://www.31ppt.com/p-2433316.html