小学数学教育论文.doc
《小学数学教育论文.doc》由会员分享,可在线阅读,更多相关《小学数学教育论文.doc(13页珍藏版)》请在三一办公上搜索。
1、河北广播电视大学“人才培养模式改革和开放教育试点” 小学教育 毕业论文论文题目 数学思想在课堂教学中的渗透 学生姓名 孙丽珍 学 号 1013001267569 指导教师 张锁军 年 级 10年秋 分校/学院 定州电大 提交日期 2010.8 内容提要:问题是数学的心脏,方法是数学的行为,思想是数学的灵魂。不管是数学概念的建立,数学规律的发现,还是数学问题的解决,乃至整个“数学大厦的构建,核心的问题在于数学思想方法的建立和培养。引导学生理解和掌握以数学知识为载体的数学思想方法,是提高学生思维水平、建立科学的数学观念、发展和运用数学的重要保证。在教学中加强数学思想方法的渗透是实现数学教育目标的一
2、个重要措施,学生不仅要“获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和必要的应用技能”;而且要“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识,具有初步的创新精神和实践能力”。所以,在学生学习数学知识的同时渗透数学思想和方法的教学,让学生在掌握表层知识的同时领悟到深层知识,将实现数学学习质的“飞跃”,也是数学教学改革的新视角。关键词: 数学思想方法 小学数学教学 渗透目 录一、什么是小学数学思想方法二、把数学思想引入小学数学教学中的必要性(一)是数学课程标准的要求(二)是实施素质教育的要求(三)是提高数学
3、素养的重要途径三、渗透哪些数学思想方法(一)数形结合的思想方法(二)化归的思想方法(三)分类的思想方法(四)建模的思想方法四、渗透数学思想的策略(一)更新观念、提高认识(二)注重学生参与(三)在善于挖掘教材中的数学思想(四)在教学过程中注意数学思想的训练1、在知识形成过程中渗透。(1)重视概念的形成过程(2)引导学生对定理、公式的探索、发现、推导的过程2、在解决问题中体验3、在实验操作中认知4、在体验反思中领悟5、勤于练习,善于提炼6、在知识小解中提升五、渗透时应注意的问题(一)渗透的自觉性(二)渗透的可行性(三)渗透的反复性参考文献数学思想在课堂教学中的渗透一、什么是小学数学思想方法所谓数学
4、思想,是指人们对数学理论与内容的本质认识。所谓数学方法,是指人们解决数学问题的方法,即解决数学具体问题时所采用的方式、途径和手段。了解了二者的关系,懂得数学思想是宏观的,而数学方法则是微观的;数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段;前者给出了解决问题的方向,后者给出了解决问题的策略。由于小学阶段的数学思想和方法在本质上都是相通的,所以小学数学通常把数学思想和方法看成一个整体概念,即小学数学思想方法。 二、把数学思想引入小学数学教学中的必要性(一)是数学课程标准的要求数学课标(实验稿)中指出:“学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识
5、以及基本的数学思想方法。”小学数学是义务教育的一门重要学科,它是为学生后续学习打基础的,它蕴含着许多与高等数学相通的数学思想方法。因此,根据课标倡导的精神,在小学数学教学中很有必要有目的、有意识地向学生渗透一些基本的数学思想方法。 (二)是实施素质教育的要求小学数学教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法就是增强学生数学观念,形成良好思维素质的关键。如果将学生的数学素质看作一个坐标系,那么数学知识、技能就好比横轴上的因素,而数学思想方法就是纵轴的内容。淡化或忽视数学思想方法的教学,不仅不利于学生从纵横两个维度上把握数学学科的基本结构,也必将影响其能力的发展和
6、数学素质的提高。因此,向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口(三)是提高数学素养的重要途径数学是人类参与社会生活,科技研究必可不少的工具。数学思想方法是数学的灵魂,是打开数学知识宝库的金钥匙,是层出不穷的数学发现的源泉。学生只有把数学知识上升到数学思想方法。才能有效的提高数学素养。三、渗透哪些数学思想方法(一)数形结合的思想方法 数和形是数学研究的两个主要对象,两者既有区别又有联系,一方面,抽象的数学概念和复杂的数量关系,借助图形使之形象化、直观化、简单化;另一方面,复杂的几何形体可以用简单的数量关系来表示。在数学教学中,由数想形,以形助数的数形结
7、合思想,具有可以使问题直观呈现的优点,有利于加深学生对知识的识记和理解;在解答数学问题时,数形结合,有利于学生分析题中数量之间的关系,丰富表象,引发联想,启迪思维,拓宽思路,迅速找到解决问题的方法,从而提高分析问题和解决问题的能力。抓住数形结合思想教学,不仅能够提高学生数形转化能力,还可以提高学生迁移思维能力。如:一批货已经运走了50吨,还剩下全部的少1吨,这批货共有多少吨?画出线段图后,题中数量之间的对应关系就非常清楚:1全部货物?吨,1 (501)吨,学生可以很快地列出算式(501)(1)。通过数形结合,把题中给出的数量关系转化成图形,由图直观地揭示数量关系,有利于活跃学生的思维,拓宽学生
8、的解题思路,提高解题能力,促进智力的发展。 (二)化归的思想方法化归思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。应当指出,这种化归思想不同于一般所讲的“转化”、“转换”,它具有不可逆转的单向性。例1狐狸和黄鼠狼进行跳跃比赛,狐狸每次可向前跳412米,黄鼠狼每次可向前跳234米。它们每秒种都只跳一次。比赛途中,从起点开始,每隔1238米设有一个陷阱,当它们之中有一个掉进陷阱时,另一个跳了多少米?这是一个实际问题,但通过分析知道,当狐狸(或黄鼠狼)第一次掉进陷阱时,它所跳过的距离即是它每次所跳距离412(或234)米的整倍数,又是陷阱间隔1
9、238米的整倍数,也就是412和1238的“最小公倍数”(或234和1238的“最小公倍数”)。针对两种情况,再分别算出各跳了几次,确定谁先掉入陷阱,问题就基本解决了。上面的思考过程,实质上是把一个实际问题通过分析转化、归结为一个求“最小公倍数”的问题,即把一个实际问题转化、归结为一个数学问题,这种化归思想正是数学能力的表现之一。 (三)分类的思想方法分类是根据教学对象的本质属性的异同按某种标准,将其划分为不同种类,即根据教学对象的共同性与差异性,把具有相同属性的归入一类,把具有不同属性的归入另一类进行分析研究。分类是数学发现的重要手段,在教学中,如果对学过的知识恰当地进行分类,就可以使大量纷
10、繁的知识具有条理性。一般分类时要求满足互斥,无遗漏、最简便的原则。如整数以能否被2整除为例,可分为奇数和偶数;若以自然数的约数个数来分类,则可分为质数、合数和1。几何图形中的分类更常见,如学习“角的分类”时,涉及到许多概念,而这些概念之间的关系渗透着量变到质变的规律。其中几种角是按照度数的大小,从量变到质变来分类的,由此推理到在三角形中以最大一个角大于、等于和小于90为分类标准,可分为钝角三角形、直角三角形和锐角三角形。而三角形以边的长短关系为分类标准,又可分为不等边三角形和等边三角形,等边三角形又可分为正三角形和等腰三角形。通过分类,建构了知识网络,不同的分类标准会有不同的分类结果,从而产生
11、新的数学概念和数学知识的结构。(四)建模的思想方法数学建模思想就是把现实世界中有待解决或未解决的问题,从数学的角度发现问题、提出问题、理解问题,通过转化过程,归结为一类已经解决或较易解决的问题中去,并综合运用所学的数学知识与技能求得解决的一种数学思想和方法。那些基本的数学模型使我们能对与之联系的实际问题,举一反三、触类旁通。学生学会了建模,有顿悟之感。四、渗透数学思想的策略(一)更新观念、提高认识在小学数学教材中数学思想是“隐形”知识,不成体系地散见于各章节中,它不像数学概念、法则、公式、性质等都明显地写在教材中。所以这些知识教师讲不讲,讲多讲少,随意性较大。但是如果在数学概念、法则、公式、性
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 数学 教育 论文
链接地址:https://www.31ppt.com/p-2421096.html