《小学数学学习方法.doc》由会员分享,可在线阅读,更多相关《小学数学学习方法.doc(11页珍藏版)》请在三一办公上搜索。
1、典型应用题 具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。 (1)平均数问题:平均数是等分除法的发展。 解题关键:在于确定总数量和与之相对应的总份数。 算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和数量的个数=算术平均数。 加权平均数:已知两个以上若干份的平均数,求总平均数是多少。 数量关系式 (部分平均数权数)的总和(权数的和)=加权平均数。 差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。 数量关系式:(大数小数)2=小数应得数 最大数与各数之差的和总份数=最大数应给数 最
2、大数与个数之差的和总份数=最小数应得数;应用题,叫做和倍问题。 解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。 解题规律:和倍数和=标准数 标准数倍数=另一个数 例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆? 分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 。 列式为( 115-
3、7 )( 5+1 ) =18 (辆), 18 5+7=97 (辆) (6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。 解题规律:两个数的差(倍数1 )= 标准数 标准数倍数=另一个数。 (7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。 解题关键及规律: 同时同地相背而行:路程=速度和时间。 同时相向而行:相遇时间=速度和时间 同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。 同时同地同向而行(速度慢的
4、在后,快的在前):路程=速度差时间。 例 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙? 分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。 已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。列式 2 8 ( 16-9 ) =4 (小时) (8)流水问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水(9) 还原问题:已知某未知数,经过一定的四则运算
5、后所得的结果,求这个未知数的应用题,我们叫做还原问题。 解题关键:要弄清每一步变化与未知数的关系。 解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。 根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。 解答还原问题时注意观察运算的顺序。若需要先算加减法,后算乘除法时别忘记写括号。 例 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人? 分析:当四个班人数相等时,应为 168 4 ,以四班为例,它调给三班 3 人,又从一班
6、调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。四班原有人数列式为 168 4-2+3=43 (人) 一班原有人数列式为 168 4-6+2=38 (人);二班原有人数列式为 168 4-6+6=42 (人) 三班原有人数列式为 168 4-3+6=45 (人)。 (10)植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。 解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。 解题规律:沿线段植树 棵树=段数+1 棵树=总路程株距+1 株距=总路程(棵树-
7、1) 总路程=株距(棵树-1) 沿周长植树 棵树=总路程株距 株距=总路程棵树 总路程=株距棵树 例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。 分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50 ( 301-1 )( 201-1 ) =75 (米) 解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数 由两车“在离中点2千米处相遇”可知,甲车比乙车少行:22=4(千米)所以,乙车行的路程是: 甲车行的路程是: A、B两站间的距
8、离是:24+20=44(千米)答略。 同普通客车相遇。甲、乙两城间相距多少千米?(适于六年级程度) 快车从乙城开出,普通客车与快车相对而行。已知普通客车每小时行60千米,快车每小时行80千米,可以求出两车速度之和。又已知两车相遇时间,可以按“速度之和相遇时间”,求出两车相对而行的总行程。普通客车已行驶 普通客车与快车速度之和是:60+80=140(千米/小时)两车相对而行的总路程是:1404=560(千米)两车所行的总路程占全程的比率是: 甲、乙两城之间相距为: 综合算式: 答略。2)求各行多少 例1 两地相距37.5千米,甲、乙二人同时从两地出发相向而行,甲每小时走3.5千米,乙每小时走4千
9、米。相遇时甲、乙二人各走了多少千米?(适于五年级程度)解:到甲、乙二人相遇时所用的时间是:37.5(3.5+4)=5(小时)甲行的路程是:3.55=17.5(千米)乙行的路程是:45=20(千米)答略。例2 甲、乙二人从相距40千米的两地同时相对走来,甲每小时走4千米,乙每小时走6千米。相遇后他们又都走了1小时。两人各走了多少千米?(适于五年级程度)解:到甲、乙二人相遇所用的时间是:40(4+6)=4(小时)由于他们又都走了1小时,因此两人都走了:4+1=5(小时)甲走的路程是:45=20(千米)乙走的路程是:65=30(千米)答略。例3 两列火车分别从甲、乙两个火车站相对开出,第一列火车每小
10、时行48.65千米,第二列火车每小时行47.35千米。在相遇时第一列火车比第二列火车多行了5.2千米。到相遇时两列火车各行了多少千米?(适于五年级程度)解:两车同时开出,行的路程有一个差,这个差是由于速度不同而形成的。可以根据“相遇时间=路程差速度差”的关系求出相遇时间,然后再分别求出所行的路程。从出发到相遇所用时间是:5.2(48.65-47.35)=5.21.3=4(小时)第一列火车行驶的路程是:48.654=194.6(千米)第二列火车行驶的路程是:47.354=189.4(千米)答略。*例4 东、西两车站相距564千米,两列火车同时从两站相对开出,经6小时相遇。第一列火车比第二列火车每
11、小时快2千米。相遇时这两列火车各行了多少千米?(适于五年级程度)解:两列火车的速度和是:5646=94(千米/小时)第一列火车每小时行:(94+2)2=48(千米)第二列火车每小时行:48-2=46(千米)相遇时,第一列火车行:486=288(千米)第二列火车行:466=276(千米)答略。2.求相遇时间例1 两个城市之间的路程是500千米,一列客车和一列货车同时从两个城市相对开出,客车的平均速度是每小时55千米,货车的平均速度是每小时45千米。两车开了几小时以后相遇?(适于五年级程度)解:已知两个城市之间的路程是500千米,又知客车和货车的速度,可求出两车的速度之和。用两城之间的路程除以两车
12、的速度之和可以求出两车相遇的时间。500(55+45)=500100=5(小时)答略。例2 两地之间的路程是420千米,一列客车和一列货车同时从两个城市 答略。例3 在一次战役中,敌我双方原来相距62.75千米。据侦察员报告,敌人已向我处前进了11千米。我军随即出发迎击,每小时前进6.5千米,敌人每小时前进5千米。我军出发几小时后与敌人相遇?(适于五年级程度)解:此题已给出总距离是62.75千米,由“敌人已向我处前进了11千米”可知实际的总距离减少到(62.75-11)千米。(62.75-11)(6.5+5)=51.7511.5=4.5(小时)答:我军出发4.5小时后与敌人相遇。例4 甲、乙两
13、地相距200千米,一列货车由甲地开往乙地要行驶5小时;一列客车由乙地开往甲地需要行驶4小时。如果两列火车同时从两地相对开出,经过几小时可以相遇?(得数保留一位小数)(适于五年级程度)解:此题用与平常说法不同的方式给出了两车的速度。先分别求出速度再求和,根据“时间=路程速度”的关系,即可求出相遇时间。200(2005+2004)=200(40+50)=200902.2(小时)答:两车大约经过2.2小时相遇。例5 在复线铁路上,快车和慢车分别从两个车站开出,相向而行。快车车身长是180米,速度为每秒钟9米;慢车车身长210米,车速为每秒钟6米。从两车头相遇到两车的尾部离开,需要几秒钟?(适于五年级
14、程度)解:因为是以两车离开为准计算时间,所以两车经过的路程是两个车身的总长。总长除以两车的速度和,就得到两车从相遇到车尾离开所需要的时间。(180+210)(9+6)=39015=26(秒)答略。3.求速度例1 甲、乙两个车站相距550千米,两列火车同时由两站相向开出,5小时相遇。快车每小时行60千米。慢车每小时行多少千米?(适于五年级程度)解:先求出速度和,再从速度和中减去快车的速度,便得出慢车每小时行:5505-60=110-60=50(千米)答略。例2 A、B两个城市相距380千米。客车和货车从两个城市同时相对开出,经过4小时相遇。货车比客车每小时快5千米。这两列车每小时各行多少千米?(
15、适于五年级程度)解:客车每小时行:(3804-5)2=(95-5)2=45(千米)货车每小时行:45+5=50(千米)答略。例3 甲、乙两个城市相距980千米,两列火车由两城市同时相对开出,经过10小时相遇。快车每小时行50千米,比慢车每小时多行多少千米?(适于五年级程度)解:两城市的距离除以两车相遇的时间,得到两车的速度和。从两车的速度和中减去快车的速度,得到慢车的速度。再用快车速度减去慢车的速度,即得到题中所求。50-(98010-50)=50-(98-50)=50-48=2(千米)答略。例4 甲、乙两地相距486千米,快车与慢车同时从甲、乙两地相对开出,经过6小时相遇。已知快车与慢车的速
16、度比是54。求快车和慢车每小时各行多少千米?(适于六年级程度) 两车的速度和是:4866=81(千米/小时)快车每小时行: 慢车每小时行: 答略。例5 两辆汽车同时从相距465千米的两地相对开出,4.5小时后两车还相距120千米。一辆汽车每小时行37千米。另一辆汽车每小时行多少千米?(适于五年级程度)解:如果两地间的距离减少120千米,4.5小时两车正好相遇。也就是两车4.5小时行465-120=345千米,345千米除以4.5小时,可以求出两车速度之和。从速度之和减去一辆车的速度,得到另一辆车的速度。 答略。例6 甲、乙两人从相距40千米的两地相向而行。甲步行,每小时走5千米,先出发0.8小
17、时。乙骑自行车,骑2小时后,两人在某地相遇。乙骑自行车每小时行多少千米?(适于五年级程度)解:两人相遇时,甲共走:0.8+2=2.8(小时)甲走的路程是:52.8=14(千米)乙在2小时内行的路程是:40-14=26(千米)所以,乙每小时行:262=13(千米)综合算式:40-5(0.8+2)2=40-52.82=40-142=262=13(千米)答略。例7 甲、乙二人从相距50千米的两地相对而行。甲先出发,每小时步行5千米。1小时后乙骑自行车出发,骑了2小时,两人相距11千米。乙每小时行驶多少千米?(适于五年级程度)解:从相距的50千米中,去掉甲在1小时内先走的5千米,又去掉相隔的11千米,
18、便得到:50-5-11=34(千米)这时,原题就改变成“两地相隔34千米,甲、乙二人分别从两地同时相对而行。甲步行,乙骑自行车,甲每小时走5千米。经过2小时两人相遇。乙每小时行多少千米?”由此可知,二人的速度和是:342=17(千米/小时)乙每小时行驶的路程是:17-5=12(千米)综合算式:(50-5-11)2-5=342-5=17-5=12(千米)答略。(二)追及问题追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的。由于速度不同,就发生快的追及慢的问题。根据速度差、距离差和追及时间三者之间的关系,常用下面的公式:距离差=速度差追及时间追及时间=距离差速度差速
19、度差=距离差追及时间速度差=快速-慢速解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。*例1 甲、乙二人在同一条路上前后相距9千米。他们同时向同一个方向前进。甲在前,以每小时5千米的速度步行;乙在后,以每小时10千米的速度骑自行车追赶甲。几小时后乙能追上甲?(适于高年级程度)解:求乙几小时追上甲,先求乙每小时能追上甲的路程,是:10-5=5(千米)再看,相差的路程9千米中含有多少个5千米,即得到乙几小时追上甲。95=1.8(小时)综合算式:9(10-5)=95=1.8(小时)答略。*例2 甲、乙二人在相距6千米的两地,同时同向
20、出发。乙在前,每小时行5千米;甲在后,每小时的速度是乙的1.2倍。甲几小时才能追上乙?(适于高年级程度)解:甲每小时行:51.2=6(千米)甲每小时能追上乙:6-5=1(千米)相差的路程6千米中,含有多少个1千米,甲就用几小时追上乙。61=6(小时)答:甲6小时才能追上乙。*例3 甲、乙二人围绕一条长400米的环形跑道练习长跑。甲每分钟跑350米,乙每分钟跑250米。二人从起跑线出发,经过多长时间甲能追上乙?(适于高年级程度)解:此题的运动路线是环形的。求追上的时间是指快者跑一圈后追上慢者,也就是平时所说的“落一圈”,这一圈相当于在直线上的400米,也就是追及的路程。因此,甲追上乙的时间是:4
21、00(350-250)=400100=4(分钟)答略。*例4 在解放战争的一次战役中,我军侦察到敌军在我军南面6千米的某地,正以每小时5.5千米的速度向南逃窜,我军立即以每小时8.5千米的速度追击敌人。在追上敌人后,只用半小时就全歼敌军。从开始追击到全歼敌军,共用了多长时间?(适于高年级程度)解:敌我两军行进的速度差是:8.5-5.5=3(千米/小时)我军追上敌军用的时间是:63=2(小时)从开始追击到全歼敌军,共用的时间是:2+0.5=2.5(小时)综合算式:60(8.5-5.5)+0.5=63+0.5=2.5(小时)答略。*例5 一排解放军从驻地出发去执行任务,每小时行5千米。离开驻地3千
22、米时,排长命令通讯员骑自行车回驻地取地图。通讯员以每小时10千米的速度回到驻地,取了地图立即返回。通讯员从驻地出发,几小时可以追上队伍?(适于高年级程度)解:通讯员离开队伍时,队伍已离开驻地3千米。通讯员的速度等于队伍的2倍(105=2),通讯员返回到驻地时,队伍又前进了(32)千米。这样,通讯员需追及的距离是(3+32)千米,而速度差是(10-5)千米/小时。根据“距离差速度差=时间”可以求出追及的时间。(3+32)(10-5)=4.55=0.9(小时)答略。(三)相离问题相离问题就是两个人或物体向相反方向运动的应用题,也叫做相背运动问题。解相离问题一般遵循“两个人或物体出发地之间的距离+速
23、度和时间=两个人或物体之间的距离”。例1 哥哥由家向东到工厂去上班,每分钟走85米,弟弟同时由家往西到学校去上学,每分钟走75米。几分钟后二人相距960米?(适于四年级程度)解:二人同时、同地相背而行,只要求出速度和,由“时间=距离速度和”即可求出所行时间。因此,得:960(85+75)=960160=6(分钟)答略。例2 甲、乙二人从同一城镇某车站同时出发,相背而行。甲每小时行6千米,乙每小时行7千米。8小时后,甲、乙二人相距多少千米?(适于四年级程度)解:先求出二人速度之和,再乘以时间就得到二人之间的距离。(6+7)8=138=104(千米)答略。*例3 东、西两镇相距69千米。张、王二人同时自两镇之间的某地相背而行,6小时后二人分别到达东、西两镇。已知张每小时比王多行1.5千米。二人每小时各行多少千米?出发地距东镇有多少千米?(适于高年级程度)解:由二人6小时共行69千米,可求出他们的速度和是(696)千米/小时。张每小时比王多行1.5千米,这是他们的速度差。从而可以分别求出二人的速度。张每小时行:(696+1.5)2=(11.5+1.5)2=132=6.5(千米)王每小时行:6.5-1.5=5(千米)出发地距东镇的距离是:6.56=39(千米)答:张每小时行6.5千米,王每小时行5千米;出发地到东镇的距离是39千米。
链接地址:https://www.31ppt.com/p-2420675.html