小升初奥数课程简便运算.doc
《小升初奥数课程简便运算.doc》由会员分享,可在线阅读,更多相关《小升初奥数课程简便运算.doc(19页珍藏版)》请在三一办公上搜索。
1、 小学数学简便运算方法归类 一、 带符号搬家法(根据:加法交换律和乘法交换率) 当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带 符号搬家”。(a+b+c=a+c+b,a+b-c=a-c+b,a-b+c=a+c-b,a-b-c=a-c-b;abc=acb,abc=acb,abc=acb,abc=acb) 二、结合律法 (一)加括号法 1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。(即在加减运算中添括号时
2、,括号前是加号,括号里不变号,括号前是减号,括号里要变号。) a+b+c=a+(b+c), a+b-c=a +(b-c), a-b+c=a(b-c), a-b-c= a-( b +c); 2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。) abc=a(bc), abc=a(bc), abc=a(bc), abc=a(bc) (二)去括号法 1.当一个计
3、算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)a+(b+c)= a+b+c a +(b-c)= a+b-c a- (b-c)= a-b+c a-( b +c)= a-b-c 2.当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。(现在没有括号了,可以带符号搬家
4、了哈) (注:去掉括号是添加括号的逆运算)a(bc) = abc, a(bc) = abc, a(bc) = abc , a(bc) = abc三、乘法分配律法 1.分配法 括号里是加或减运算,与另一个数相乘,注意分配 24(-) 2.提取公因式 注意相同因数的提取。 0.921.410.928.59 - 3.注意构造,让算式满足乘法分配律的条件。 103-2- 2.69.9 四、借来还去法看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难嘛。 9999+999+99+9 4821-998 1. 拆分法 顾名思义,拆分法就是为了方便计算把一个
5、数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。 3.212.525 1.2588 3.60.25 2. 巧变除为乘 也就是说,把除法变成乘法,例如:除以可以变成乘4。 7.60.25 3.50.125 七、 裂项法 分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,
6、这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。 分数裂项的三大关键特征: (1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。 (2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。 分数裂项的最基本的公式 这一种方法在一般的小升初考试中不常见,属于小学奥数方面的知识。有余力的孩子可以学一下。 简便运算(一)专题简析:根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。例题1。计
7、算4.75-9.63+(8.25-1.37) 原式4.75+8.259.631.37 13(9.63+1.37) 1311 2练习1计算下面各题。1 6.73-2 +(3.271 ) 2. 7(3.8+1 )13. 14.15(76)2.125 4. 13(4+3)0.75例题2。计算33338779+79066661 原式333387.579+79066661.25 (33338.75+66661.25)790 100000790 79000000练习2计算下面各题:1. 3.51+125+1 2. 9750.25+9769.753. 9425+4.25 4. 0.99990.7+0.111
8、12.7例题3。计算:361.09+1.267.3原式1.2301.09+1.267.3 1.2(32.7+67.3) 1.2100 120疯狂操练 3计算:1. 452.08+1.537.6 2. 5211.1+2.67783. 481.08+1.256.8 4. 722.091.873.6例题4。计算:325+37.96 原式325+(25.4+12.5)6.4 325+25.46.4+12.56.4 (3.6+6.4)25.4+12.580.8 254+80 334练习4计算下面各题:1. 6.816.8+19.33.22. 139+1373. 4.457.8+45.35.6例题5。计算
9、81.515.8+81.551.8+67.618.5 原式81.5(15.8+51.8)+67.618.5 81.567.6+67.618.5 (81.5+18.5)67.6 10067.6 6760练习53. 53.535.3+53.543.2+78.546.54. 23512.1+23542.213554.35. 3.757355730+16.262.5答案:练一: 1、6 2、1 3、11 4、5练二: 1、7.5 2、975 3、4250 4、0.9999练三: 1、150 2、2600 3、120 4、18 练四: 1、176 2、138 3、508练五: 1、7850 2、=543
10、0 3、=1620简便运算(二)专题简析:计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算,这种思考方法在四则运算中用处很大。例题1。计算:1234+2341+3412+4123简析注意到题中共有个四位数,每个四位数中都包含有、这几个数字,而且它们都分别在千位、百位、十位、个位上出现了一次,根据位值计数的原则,可作如下解答: 原式11111+21111+31111+41111 (1+2+3+4)1111 101111 11110练习11. 23456+34562+45623+56234+623452. 45678+56784+67845+78456+84
11、5673. 124.68+324.68+524.68+724.68+924.68例题2。计算:223.4+11.157.6+6.5428 原式2.823.4+2.865.4+11.187.2 2.8(23.4+65.4)+88.8 7.2 2.888.8+88.87.2 88.8(2.8+7.2) 88.810 888练习2计算下面各题:1. 9999977778+33333666662. 34.576.53456.421231.453. 7713+255999+510例题3。计算 原式 1练习3计算下面各题:1. 2. 3. 例题4。有一串数1,4,9,16,25,36.它们是按一定的规律排
12、列的,那么其中第2000个数与2001个数相差多少? 20012200022001200020002+2001 2000(20012000)+2001 2000+2001 4001练习4计算:1. 1991219902 2. 99992+19999 3. 999274+6274例题5。计算:(9+7)(+) 原式(+)(+) 【65(+)】【5(+)】 655 13练习5计算下面各题:1. (+1+)(+)2. (3+1)(1+)3. (96+36)(32+12)答案:练一: 1、222220 2、333330 3、2623.4练二: 1、9999900000 2、246 3、256256练三
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小升初奥数 课程 简便 运算
链接地址:https://www.31ppt.com/p-2415746.html