乘公交看奥运大学生数学模型.doc
《乘公交看奥运大学生数学模型.doc》由会员分享,可在线阅读,更多相关《乘公交看奥运大学生数学模型.doc(57页珍藏版)》请在三一办公上搜索。
1、高教社杯全国大学生数学建模竞赛承 诺 书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的
2、话): 所属学校(请填写完整的全名): 重 庆 大 学 参赛队员 (打印并签名) :1. 2. 3. 指导教师或指导教师组负责人 (打印并签名): 日期: 年 月 日赛区评阅编号(由赛区组委会评阅前进行编号):高教社杯全国大学生数学建模竞赛编 号 专 用 页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):摘 要本文建立了乘公交看奥运最佳线路的选择模型。在仅就满足公众对乘车耗时最少和花费最低的两种需求,对三个情形:仅考虑公汽的单一线路,同时考虑公汽与地铁两种线路,
3、兼顾步行公汽地铁三种线路,分别建立了任意两站点之间线路选择问题的数学模型,依托matlab软件编程给出相应的的算法。并利用所建立的模型与算法,求出给定的6对起始站终到站之间的最佳路线,并做出了清晰的评价说明。最后,本文还对模型作出了进一步分析、评价和推广。针对问题一中仅考虑乘坐公汽,我们在对问题分析的基础上,运用matlab软件编程并搜索,就乘客的耗时最少需求,建立了模型(耗时最少的线路选择模型),给出了相应的算法步骤及程序框图,并针对六组得到如下结果:S3359S1828,换乘一次有两条线路,都经过了32个站点,所花费的时间均为101分钟;S1557S0481:至少需换乘两次,线路有两条,也
4、经过32个站点,耗时101分钟;S0971S0485:换乘一次,通过41站,耗时128分钟;S0008S0073:换乘一次,有14种不同线路,经过26站,耗时83分钟;S0148S0485:至少需换乘两次,线路有6条,且都经过32个站点,耗时101分钟;S0087S3676:换乘一次,经过20站,耗时65分钟。同样,就乘客的费用最低需求,建立了模型(费用最低的线路选择模型),给出了相应的算法步骤,得到结果详见正文第12页至第13页。针对问题二,同时考虑公汽与地铁两种线路,我们建立了模型(分步规划模型),通过设计算法步骤,再运用Matlab编程可求出以上完成,我们可求出以上六组点的结果,详见正文
5、第15页至第18页。针对问题三,兼顾步行公汽地铁三种线路,我们建立了模型(线路综合评价模型),第三题是在前面问题的基础上,加入了步行这一较为自主化的“交通工具”,使得原本的选择最优线路模型不再适用,于是我们这里建立了一个线路综合评价模型,通过分类讨论的方式,提供适合各种情况的线路选择方案,从而解决在三种交通工具并行时的路线选择问题。本文最后还对这一自主查询系统进行了推广,将自主查询系统推广到手机彩信或短信,给出了系统结构设计和网络拓扑结构图;同时,将这一自主查询系统应用到旅游线路选择上,并绘制了旅游线路选择系统结构图。关键词:线路选择;换乘;分步规划;自主查询系统;Matlab1、问题的重述一
6、、问题背景1、看奥运要出行2008年8月8日至8月24日,我国人民翘首企盼的第29届奥运会将在北京举行,届时将会有大量观众从不同地点到达比赛现场去观看奥运盛况,其中大部分人将会乘坐公共交通工具(简称公交,包括公汽、地铁等)出行。2、乘公交需择线这些年来,随着科技进步、政府投资及市政部门对城市道路的不断完善,我国城市的公交系统有了很大发展,作为我国首都北京市,它的公交线路已多达800条以上,这使得广大市民的出行更加通畅、便利。但是,同时也因线路的众多,为广大市民的出行带来一个新的问题,乘车从一个地方到另一个地方,如果都在同一条公交线路上,市民则不存在选择;如果需要换乘,特别是二次以上的换乘,市民
7、则面临着多种选择,可分别从选最短线路、花最少时间、用最少换乘、节省票价等各个方面进行决策,以实现出行任务的完成。3、做系统先建模针对市场需求,某公司准备研制开发一个解决公交线路选择问题的自主查询计算机系统。为了设计这样一个系统,其核心是线路选择的模型与算法,应该从实际情况出发考虑,满足查询者的各种不同需求。二、有关数据1、基本参数设定相邻公汽站平均行驶时间(包括停站时间):3分钟;相邻地铁站平均行驶时间(包括停站时间):2.5分钟;公汽换乘公汽平均耗时:5分钟(其中步行时间2分钟);地铁换乘地铁平均耗时:4分钟(其中步行时间2分钟);地铁换乘公汽平均耗时:7分钟(其中步行时间4分钟);公汽换乘
8、地铁平均耗时:6分钟(其中步行时间4分钟);公汽票价:分为单一票价与分段计价两种,标记于线路后;其中分段计价的票价为:020站:1元;2140站:2元;40站以上:3元;地铁票价:3元(无论地铁线路间是否换乘)。注:以上参数均为简化问题而作的假设,未必与实际数据完全吻合。2、公交线路及相关信息(详见附件2中文本文档1、1.1、1.2及2、2.1、2.2)。三、问题提出1、问题一:仅考虑公汽线路,给出任意两公汽站点之间线路选择问题的一般数学模型与算法。并根据附录数据,利用你们的模型与算法,求出以下6对起始站终到站之间的最佳路线(要有清晰的评价说明)。S3359S1828;S1557S0481;S
9、0971S0485;S0008S0073;S0148S0485;S0087S3676。2、问题二:同时考虑公汽与地铁线路,解决问题一中两个问题。3、问题三:假设又知道所有站点之间的步行时间,请你给出任意两站点之间线路选择问题的数学模型。2、问题的分析一、问题的总体分析与相关量的明确1、问题的总体分析乘公交看奥运公交线路选择问题涉及到数百条公汽线路与两条地铁公交线路、数千个公汽站点与几十个地铁站点、三类不同乘车票价信息、上行下行单行环形四种车行方向等多个因素,且出行查询者的通常需求分别有选最短线路、花最少时间、用最少换乘以及用最低票价,当然这些需求在小城市道路比较单一时可能是相一致的,但对拥有众
10、多车辆及线路且道路如网的首都北京而言,这些需求则不尽然。故问题这是一类多因素多数据计算机查询信息处理及多目标决策问题,核心是算法。2、几个重要的量为了便于解决问题,下面我们先明确问题涉及到的几个重要相关量。运用相关的统计方法,从竞赛B题所给的压缩文本文档中,我们不难得到以下几个量的准确信息:公交线路:520条公汽线路,编号:L001L520;两条地铁线路T1与T2。公交站点:3957个公汽站点,编号:S0001S3957;39个地铁站点,编号:D01D39。公汽线路与站点:文本文档1.1具体地给出了520条公汽线路编号,票价信息,车行线信息(详见2007年竞赛B题压缩文本文档1.1)。地铁线路
11、与站点:文本文档1.2具体地给出了北京地铁线路T1与T2,我们通过上网搜索1很易获取相关的地铁图片(图1)与北京地铁T1、T2线路图(图2)。结合文档1.2所给北京地铁线路T1与T2的信息,我们不难发现,地铁T1的23个站与地铁T2的16个站相吻合,且图2中的复兴门为D12与建国门为D18是可以换乘的两个站。 图1 地铁图片 图2 北京地铁T1、T2线路图二、对具体问题的分析1、对问题一的分析问题:仅考虑公汽线路,给出任意两公汽站点之间线路选择问题的一般数学模型与算法。并根据附录数据,利用所给出的模型与算法,求出6对起始站终到站之间的最佳路线,且要有清晰的评价说明。分析:要寻找两站之间的最佳公
12、交线路,就是要满足不同乘客乘坐公交的一定要求,比如选最短线路、花最少时间、用最少换乘或花最低票价等等。为了简化对问题的解决,我们不妨假定求最佳路线,仅在乘车耗时最少、花费最低两种条件下确定最佳公交线路。对于在同一线路上的任意两个站点,若通过两个站点的线路仅一条(如图3左),显然这一条也就是最佳路线;若通过两个站点的线路有两条及两条以上的线路,按基本参数设定知,最佳路线是中间站点数最少的线路,如图3右图中蓝色的直线即最佳路线。图3 两站间通过的线路仅一条与两站间通过的线路有两条线路图对于不在任何一条公交线路上的两个站点,即没有直达的公交线路,则要考虑换乘,若通过起始站的所有线路和通过终到站的所有
13、线路有且仅有一个公共站点,如图4左可知,则相交站点的线路ACB即为最佳路线;若通过起始站的所有线路和通过终到站的所有线路多于一个公共站点,如图4右C站和D站均为换乘站点,显然同样换乘次数时换乘线路所经过的站数较少的ACB线要优于ADB,从而ACB线为最佳路线。同样换乘次数时多于两条换乘线的,则换乘线路所经过站数最少的为最佳路线。 图4 两站间换乘一次线路仅有一条与换乘一次线路有两条线以上的线路图如果对进行一次换乘不能完成出行任务的,我们要进行两次换行计划。类似上述的分析,我们可以得到两次的换乘情形下的最佳路线。显然这要比前两类情形复杂得多,但运用计算机进行编程一般是可以实现的。如果对进行两次换
14、乘仍不能完成出行任务的,我们要进行三次或三次以上的换乘。但考虑到换乘三次及三次以上研究的技术处理和实际操作太复杂且实际意义不大,故在最初建模时可不予考虑,在对建模进行改进时,可酌情考虑。当然,对于基于最低价格的最佳模型求解,除了要考虑以上的分析外,我们还要考虑各类票价信息。首先我们要搜索出所有需要分段计价的公汽线路,然后根据题目中的分段计价要求建立一个价格矩阵,再由前述换乘法求出的结果进行价格计算,看是否满足价格最小的条件,对不满足的利用排序求出最小价格,并得到相对应的线路信息。2、对问题二的分析问题:同时考虑公汽与地铁线路时,解决问题一的建模、算法和6条最佳路线。分析:问题二是在问题一只有公
15、共汽车单一交通工具的基础上,通过引入地铁这一交通工具,使得转乘不仅仅是公汽转公汽,还包括公汽转地铁,地铁转地铁,地铁转公汽,使得转乘问题复杂化。为了得到用时最少的线路,我们可考虑建立了分步规划模型进行求解,将总用时最少这一规划问题,分成在每次搭乘都用时最少的分布规划问题。从而在综合考虑公汽与地铁的情况下确定了最佳线路。3、对问题三的分析问题:假设又知道所有站点之间的步行时间,请你给出任意两站点之间线路选择问题的数学模型。分析:第三题是在前面两个问题的基础上,加入了步行这一较为自主化的“交通工具”,使得原本的选择最优线路模型不再使用,于是我们这里建立了一个线路综合评价模型,通过分类讨论的方式,提
16、供适合各种情况的线路选择方案,从而解决在三种交通工具并行时的路线选择问题。3、模型的假设1、为便于研究问题,规定每条线路起点站的位标为1,从起点站至终点站的其余各站的位标依次为2、3、。2、由于基本参数已设定,不再考虑发车频率和乘客到达时刻及等待时间;3、由于公交线路的交错复杂,不考虑公交线路的编排次序和公交站点的编排次序;4、交通状况良好,无交通阻塞及其它影响交通运营的异常情况发生; 5、作为交通系统比较发达和完善的首都北京,联通任意两站间的线路最多换乘两次,换乘三次及三次以上研究太复杂且实际意义不大,故不予考虑。4、名词解释与符号说明一、名词解释1、换乘:从一辆车下来转乘另一辆车的过程;2
17、、位标:为建模而自行定义的变量,规定一条线路从始发站起各站的位标依次为1、2、3、。二、符号说明1. :所有公汽线路数据处理后得到的;2. :经过起始站S1的所有线路站台矩阵;3. :经过终到站S2的所有线路站台矩阵;4. , :公汽的起始站点;5. :公汽的终到站点;6. :只考虑公汽情况下起始站与终到站的公共站点;7. :公共站点与起始站在同一线路上的公共站点的列标;8. :公共站点与终到站在同一线路的公共站点的列标;9. :与公共站点在同一条线路上的起始站的列标;10. :与公共站点在同一条线路上的终到站的列标;11. :只考虑公汽情况下从起始站到公共站点的站点数量,即 ;12. :只考
18、虑公汽情况下从公共站点与终到站的站点数量,即 ;12. :只考虑公汽情况下从起始站到终到站的总的站点数量,即 ;13. :只考虑公汽情况下耗费时间最少情况下得到的最佳路线的中转站;14. :只考虑公汽情况下乘车费用最低情况下得到的最佳路线的中转站;15. :为使得 以一个向量的形式输出,同时为了循环的方便而引进的变量,初值为1;16. :乘车所耗费的总时间,包括等待和转乘的时间;17. :所有分段计价线路数据组成的矩阵;18. :只考虑公汽情况下从起始站到中转站的票价;19. :只考虑公汽情况下从中转站到终到站的票价;20. :耗时最少的最佳路线的乘车费用,计算得到价格并计算出最低价格;21.
19、 :乘车费用最低的最佳路线的最低乘车费用;22. :根据分段计价标准的不同得到的 的分段计价价格向量,由数字1,2,3组成;23.ij:地铁相邻的公汽站台矩阵;24.P:矩阵ij与矩阵B的交;25.:矩阵ij与矩阵C的交;26. :矩阵B与矩阵ij的公共元素;27. :矩阵C与矩阵ij的公共元素;28.ti:乘坐交通工具时经历的时间;29.t0:交通工具换乘用时平均耗时;30.ni:乘坐交通工具时经过的有效站台数;31. :任意两站点i、j之间的步行时间。5、模型的建立与求解从所要解决的问题和对问题所做的假设出发,我们对问题一分别建立了模型(耗时最少的线路选择模型)和模型(费用最低的线路选择模
20、型),我们对问题二建立了模型(分步规划模型),我们对问题三建立了模型(线路综合评价模型)。一、问题一的分析与求解1、问题一的分析要寻找两站之间的最佳公交线路,就是要满足各类乘客乘坐公交的不同要求,为了简化对问题解决,我们大体上认为最佳路线即是乘车耗时最少、乘车费用最少两种情况来对问题一进行求解。为了实现这一目标,我们对题目给出的大量数据进行了相应的处理,发现对问题中列出的六组站点,都无法根据现有的公交线路直达,于是就要考虑公交车的换乘问题。在考虑到技术处理和实际操作的可行性,我们不妨假设最多换乘两次就可以到达任意站点,否则,乘客可以根据车行方向随机地选择车路,然后到一定车站后再行查询,或通过步
21、行到能够附近站点。对于基于乘车费用最少的模型求解,我们首先搜索出所有需要分段计价的公汽线路,然后根据题目中的分段计价要求建立一个价格矩阵,首先对由模型求出的结果进行价格计算,看是否满足价格最小的条件,对不满足的利用排序求出最小价格,并得到相对应的线路信息。2、建模的思想建立数据库为了确定公汽线路的最佳路线选择,首先把附录2中的文本文档“1.1 公汽线路信息.txt”进行处理,并转换到excel软件中,形成以第一列线路为公汽线路编号,第二列为价格信息,第三列为车行性质,第四列为各线路上所有车站点的大型数据库(详见附录3),以此为基础,下面进一步研究。搜索起始站和终到站所经过的线路通过对数据库的搜
22、索,查询起始站和终到站是否有相同的车经过,如果有且仅有一条,即为最佳乘车线路;如果有且多于一条,则只要计算从起始站到终到站的总站数,通过比较可以得到战数最少的公交线路,推荐给乘客。我们可用VB语言编程建立计算机循环查询系统。运用此系统产生的对话框进行查询起始站和终到站是否有相同的车经过,我们只要输入起始站的站名(比如S0001),然后再输入终到站的站名(比如S0158),则在打开的excel文件前的对话框里产生一串语句,比如有,则在回答“直达”,且紧跟“直达”的后面给出了起始站到终到站的站数,结束;如果没有,则回答“不能直达”,下面再转入下一步研究。寻找一次换乘的线路分别从数据库中搜索通过起始
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 公交 奥运 大学生 数学模型
链接地址:https://www.31ppt.com/p-2377572.html