八级上册数学全册导学案.doc
《八级上册数学全册导学案.doc》由会员分享,可在线阅读,更多相关《八级上册数学全册导学案.doc(51页珍藏版)》请在三一办公上搜索。
1、第一学时:11.1.1三角形的边一、学习目标1认识三角形,能用符号语言表示三角形,并把三角形分类2知道三角形三边不等的关系3懂得判断三条线段能否构成一个三角形的方法,并能用于解决有关的问题二、重点:知道三角形三边不等关系 难点:判断三条线段能否构成一个三角形的方法三、合作学习知识点一:三角形概念及分类1、学生自学教科书内容,并完成下列问题:ABC(1)三角形概念:由不在同一直线上的三条线段顺次首尾连接所组成的图形叫做三角形。如图,线段_、_、_是三角形的边;点A、B、C是三角形的_; _、 _、_是相邻两边组成的角,叫做三角形的内角,简称三角形的角。图中三角形记作_。(2)三角形按角分类可分为
2、_、_、_。(3)三角形按边分类可分为 _(4)如图,等腰三角形ABC中,AB=AC,腰是_, 底是_,顶角指_,底角指_.等边三角形DEF是特殊的_三角形,DE=_=_.四、练习一:1、如图下列图形中是三角形的_? 2、图3中有几个三角形?用符号表示这些三角形教师备课札记知识点二:知道三角形三边的不等关系,并判断三条线段能否构成三角形1、探究:请同学们画一个ABC,分别量出AB,BC,AC的长,并比较下列各式的大小:AB+BC_AC AB + AC _ BC AC +BC _ AB 结论:三角形任意两边的和大于第三边,任意两边的差小于第三边练习二:1、下列长度的三条线段能否组成三角形?为什么
3、? (1)3,4,8; (2)5,6,11; (3)5,6,102、有四根木条,长度分别是12cm、10cm、8cm、4cm,选其中三根组成三角形,能组成三角形的个数是_个。3、如果三角形的两边长分别是3和5,那么第三边长可能是( )A、1 B、9 C、3 D、104、阅读教科书例题,仿照例题解法完成下面这个问题:5、一个三角形有两条边相等,周长为20cm,三角形的一边长6cm,求其他两边长。6、一个等腰三角形的两边长分别是2和5,则它的周长是( )A、7 B、9 C、12 D、9或127、若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为_.8、(选做)若ABC的三边长都是整
4、数,周长为11,且有一边长为4,则这个三角形可能的最大边长是_.9、已知线段3cm,5cm,xcm,x为偶数,以3,5,x为边能组成_个三角形。第二学时:11.1.2三角形的高,中线,角平分线一、学习目标1.认识并会画出三角形的高线,利用其解决相关问题;2.认识并会画出三角形的中线,利用其解决相关问题;3.认识并会画出三角形的角平分线,利用其解决相关问题;二、重点:认识三角形的高线、中线与角平分线,并会画出图形难点:画出三角形的高线、中线与角平分线三、合作学习知识点一:认识并会画三角形的高线,利用其解决相关问题自学教科书:三角形的高并完成下列各题:1、作出下列三角形三边上的高:ACBACB2、
5、上面第1图中,AD是ABC的边BC上的高,则ADC= = 3、由作图可得出如下结论:(1)三角形的三条高线所在的直线相交于 一 点;(2)锐角三角形的三条高相交于三角形的 内部 ;(3)钝角三角形的三条高所在直线相交于三角形的 ;(4)直角三角形的三条高相交三角形的 ;三角形三条高所在直线的交点叫做三角形的垂心四、练习一:如图所示,画ABC的一边上的高,下列画法正确的是( ) 知识点二:认识并会画三角形的中线,利用其解决相关问题自学教科书 三角形的中线并完成下列各题:1、 作出下列三角形三边上的中线ACBACB2、AD是ABC的边BC上的中线,则有BD = = ,3、由作图可得出如下结论:(1
6、)三角形的三条中线相交于 点;(2)锐角三角形的三条中线相交于三角形的 ;(3)钝角三角形的三条中线相交于三角形的 ;(4)直角三角形的三条中线相交于三角形的 ;三角形三条中线的交点叫做三角形的重心。练习二:如图,D、E是边AC的三等分点,图中有 个三角BD是三角形 中 边上的中线,BE是三角形 中_上的中线;知识点三:认识并会画三角形的角平分线,利用其解决相关问题自学教科书: 三角形的角平分线并完成下列各题:ACBACB1、作出下列三角形三角的角平分线:2、AD是ABC中BAC的角平分线,则BAD= = 3、由作图可得出如下结论:(1)三角形的三条角平分线相交于 点;(2)锐角三角形的三条角
7、平分线相交三角形的 ;(3)钝角三角形的三条角平分线相交三角形的 ;(4)直角三角形的三条角平分线相交三角形的 ;三角形角平分线的交点叫做三角形的内心。练习三:如图,已知1=BAC,2 =3,则BAC的平分线为 ,ABC的平分线为 .总结:三角形的高、中线、角平分线都是一条线段。拓展部分1三角形的角平分线是( ) A直线 B射线 C线段 D以上都不对2下列说法:三角形的角平分线、中线、高线都是线段;直角三角形只有一条高线;三角形的中线可能在三角形的外部;三角形的高线都在三角形的内部,并且相交于一点,其中说法正确的有( ) A1个 B2个 C3个 D4个 第三学时:11.1.3三角形的稳定性一、
8、学习目标1认识三角形的稳定性,并会用其解决一些实际问题;2、通过练习进一步巩固三角形的边和相关线段。二、重点:三角形的稳定性难点:三角形的稳定性的理解三、合作学习知识点一:三角形的稳定性 自学教科书内容,回答下列问题:通过观察,你发现生活中哪些物体的结构是三角形?二、做一做1、用三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?2、用四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?4、如图4所示,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢
9、?6、想一想:在实际生活中还有哪些地方利用了“三角形的稳定性”来为我们服务?“四边形易变形”是优点还是缺点?生活中又有哪些应用(推拉式的门)三角形具有稳定性,四边形具有可变性。四、练习1. 如图,木工师傅做完门框后,为了防止变形,常常像图中所示那样钉上两条斜拉的木条,这样做的数学道理是 ;教师备课札记2. 下列图中哪些具有稳定性? 。123456 对不具稳定性的图形,请适当地添加线段,使之具有稳定性。3、造房子的屋顶常用三角结构,从数学角度来看,是应用了_,而活动接架则应用了四边形的_。_F_A_D_C_B_E知识点二:通过练习进一步巩固三角形的边和相关线段拓展部分1如图:(1)在ABC中,B
10、C边上的高是_ (2)在AEC中,AE边上的高是_(3)在FEC中,EC边上的高是_(4)若AB=CD=2cm,AE=3cm,则 SAEC_,CE=_。2.以下列各组线段长为边,能组成三角形的是 ( )A.1cm,2cm,4cm; B.8cm,6cm,4cm C.12cm,5cm,6cm; D.2cm,3cm,6cm3.已知等腰三角形的两边长分别为6cm和3cm,则该等腰三角形的周长是( )A.9cm B. 12cm C. 12cm或15cm D. 15cm提高部分1.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是( )A.
11、20米 B.15米 C.10米 D.5米2、如图,点D是BC边上的中点,如果AB=3厘米,AC=4厘米,ABDCAOB则ABD和ACD的周长之差为_,面积之差为_。第四学时 :与三角形有关的线段练习一、学习目标:通过练习进一步巩固三角形的边和相关线段。二、重点:巩固三角形的边和相关线段;难点、三角形三边不等关系的运用学前准备1、什么叫做三角形?2、三角形按边可分为什么?按角可分为什么?3、三角形三边不等关系是什么?4、三角形的高、中线、角平分线各有什么特征?5、三角形具有_性,四边形具有_性。达标检测:1.如图1,图中所有三角形的个数为 ,在ABE中,AE所对的角是 ,ABC所对的边是 ,在A
12、DE中,AD是 的对边,在ADC中,AD是 的对边;2.如图2,已知1=BAC,2 =3,则BAC的平分线为 ,ABC的平分线为 ;3.如图3,D、E是边AC的三等分点,图中有 个三角形,BD是三角形 中 边上的中线,BE是三角形 中 边上的中线; 图1 图2 图34.若等腰三角形的两边长分别为7和8,则其周长为 ;若两边长分别为4和8,则其周长为_.5. 如右图,木工师傅做完门框后,为了防止变形,常常像图中所示那样钉上两条斜拉的木条(图中的AB、CD),这样做的数学道理是 ;6. 一个三角形的三边之比为234,周长为36cm,则此三角形三边的长分别为7.已知ABC中,AD为BC边上的中线,A
13、B=10cm,AC=6cm,则ABD与ACD的周长之差为_.新 课 标 第 一 网7如右图,图中共有三角形 ( ) A、4个 B、5个 C、6个 D、8个8.下列长度的三条线段中,能组成三角形的是 ( )A、 3cm,5cm ,8cm B、8cm,8cm,18cmC、0.1cm,0.1cm,0.1cm D、3cm,40cm,8cm 9.如果线段a,b,c能组成三角形,那么,它们的长度比可能是 ( ) A、124 B、134 C、347 D、23410.如果三角形的两边分别为7和2,且它的周长为偶数,那么第三边的长为 ( )A、5 B、6 C、7 D、8ABCCCBBAA11.如图,分别画出三角
14、形过顶点A的中线、角平分线和高。12.已知:ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求:ABC的各边的长。13. 已知等腰三角形的一边等于8cm,另一边等于6cm,求此三角形的周长; 已知等腰三角形的一边等于5cm,另一边等于2cm,求此三角形的周长。14.在ABC中AB=AC,AC上的中线BD把三角形的周长分为24cm和30cm的两个部分,求三角形的三边长。15.【探究】如图,在ABC中,若AD是BC边上的中线,则有BD = = ,若过A点作BC边上的高AE,利用三角形的面积公式可求得SABD= =SABC,请你任意画一个三角形,将这个三角形的面积
15、四等分。第五学时:11.2.1三角形的内角一、学习目标:1.经历实验活动的过程,得出三角形的内角和定理,能用平行线的性质推出这一定理2.能应用三角形内角和定理解决一些简单的实际问题二、重点:三角形内角和定理难点:三角形内角和定理的推理的过程三、合作学习知识点一:探究三角形的内角和定理1、自学教科书内容,利用手中的硬纸片运用拼合法探究三角形的内角和。(1)在所准备的三角形硬纸片上标出三个内角的编码(2)叫几名同学到黑板运用不同的方法粘贴演示。(3)由拼合过程你能想出证明三角形内角和等于180的方法吗?2、证明三角形的内角和定理(1)阅读教科书证明过程。(2)仿照教科书证明过程选择下面的任意一个图
16、形中辅助线的做法,完成证明。ABCDEAB- 5 -E 图一 图二3归纳:(1)三角形的内角和等于180。 (2)证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程。知识点二:应用三角形内角和定理解决简单的实际问题X k B 1 . c o m四、练习1、填空: (1)在ABC中,A = 60B = 30,则C = ;(2)在ABC中,A =B = 4C,则C = ;(3)在ABC中,A = 40,B =C,则B = ;2、例:如图,C岛在A岛的北偏东方向,B岛在A岛的北偏东方向,C岛在B岛的北偏西方向,从C岛看A、B两岛的视角是多少度? 拓展部分1、判断:(1) 三角
17、形中最大的角是,那么这个三角形是锐角三角形( )(2) 一个三角形中最多只有一个钝角或直角( )(3)一个等腰三角形一定是锐角三角形( )(4) 一个三角形最少有一个角不大于( )提高部分1.三角形的三个内角之比为135,那么这个三角形的最大内角为 ;2.ABC中,A:B:C=1:2:2,则A=_,B=_,C=_第六学时:11.2.2 三角形的外角一、学习目标:1认识三角形的外角;2知道三角形的外角的两个性质;3能利用三角形的外角性质解决实际问题。二、重点:三角形外角的两个性质;难点:三角形的外角性质的证明三、学前准备1. 三角形的内角和是多少?2ABC中,A=50,B=60,则C=_3.AB
18、C中,A:B:C=1:2:2,则A=_,B=_,C=_四、合作学习知识点一:三角形外角的定义1、自学教科书理解三角形的外角的定义。2、任意画一个三角形,并画出三角形的外角。像这样,三角形的一边与另一边的延长线组成的角,叫做三角形的外角。 3、找出右图中的外角 。4、一个三角形有几个外角? 。知识点二:三角形外角的两个性质1、探究外角的性质(1)如图9,ABC中,A=70,B=60ACD是ABC的一个外角能由A,B求出ACD吗?如果能,ACD与A,B有什么关系?(2)你能进一步说明任意一个三角形的一个外角与它不相邻的两个内角 有什么关系呢?并说明理由?新|课 |标| 第 |一 | 网结论:三角形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上册 数学 全册导学案

链接地址:https://www.31ppt.com/p-2374748.html