人教版九级数学上册教案_全册.doc
《人教版九级数学上册教案_全册.doc》由会员分享,可在线阅读,更多相关《人教版九级数学上册教案_全册.doc(90页珍藏版)》请在三一办公上搜索。
1、注教及反思第二十一章 二次根式 教材内容 1本单元教学的主要内容: 二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式 2本单元在教材中的地位和作用: 二次根式是在学完了八年级下册第十七章反比例正函数、第十八章勾股定理及其应用等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础 教学目标 1知识与技能 (1)理解二次根式的概念 (2)理解(a0)是一个非负数,()2=a(a0),=a(a0) (3)掌握(a0,b0),=;=(a0,b0),=(a0,b0) (4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减 2过程与方法 (1)先提出问题,让学生探讨、分析问题,师生
2、共同归纳,得出概念再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简 (2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算 (3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简 (4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的 3情感、态度与价值观 通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题
3、的能力 教学重点 1二次根式(a0)的内涵(a0)是一个非负数;()2a(a0);=a(a0)及其运用 2二次根式乘除法的规定及其运用 3最简二次根式的概念 4二次根式的加减运算 教学难注教及反思 1对(a0)是一个非负数的理解;对等式()2a(a0)及=a(a0)的理解及应用 2二次根式的乘法、除法的条件限制 3利用最简二次根式的概念把一个二次根式化成最简二次根式 教学关键 1潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点 2培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神 单元课时划分 本单元教学时间约需11课时,具体分配如下: 211 二次
4、根式 3课时 212 二次根式的乘法 3课时 213 二次根式的加减 3课时 教学活动、习题课、小结 2课时211 二次根式第一课时 教学内容 二次根式的概念及其运用 教学目标 理解二次根式的概念,并利用(a0)的意义解答具体题目 提出问题,根据问题给出概念,应用概念解决实际问题 教学重难点关键 1重点:形如(a0)的式子叫做二次根式的概念; 2难点与关键:利用“(a0)”解决具体问题 教学过程 一、复习引入 (学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是_问题2:如图,在直角三角形ABC中,AC=3,BC=1,C=90
5、,那么AB边的长是_注教及反思 问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_ 老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3因为点在第一象限,所以x=,所以所求点的坐标(,) 问题2:由勾股定理得AB= 问题3:由方差的概念得S= . 二、探索新知 很明显、,都是一些正数的算术平方根像这样一些正数的算术平方根的式子,我们就把它称二次根式因此,一般地,我们把形如(a0)的式子叫做二次根式,“”称为二次根号 (学生活动)议一议: 1-1有算术平方根吗? 20的算术平方根是多少? 3当a0)、-、(x0,y0) 分析:二次根式应满足
6、两个条件:第一,有二次根号“”;第二,被开方数是正数或0 解:二次根式有:、(x0)、-、(x0,y0);不是二次根式的有:、 例2当x是多少时,在实数范围内有意义? 分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-10,才能有意义 注教及反思解:由3x-10,得:x 当x时,在实数范围内有意义 三、巩固练习 教材P练习1、2、3 四、应用拓展 例3当x是多少时,+在实数范围内有意义? 分析:要使+在实数范围内有意义,必须同时满足中的0和中的x+10 解:依题意,得 由得:x- 由得:x-1 当x-且x-1时,+在实数范围内有意义 例4(1)已知y=+5,求的值(答案:2)(
7、2)若+=0,求a2004+b2004的值(答案:) 五、归纳小结(学生活动,老师点评) 本节课要掌握: 1形如(a0)的式子叫做二次根式,“”称为二次根号 2要使二次根式在实数范围内有意义,必须满足被开方数是非负数 六、布置作业 第一课时作业设计 一、选择题 1下列式子中,是二次根式的是( ) A- B C Dx 2下列式子中,不是二次根式的是( ) A B C D 3已知一个正方形的面积是5,那么它的边长是( ) A5 B C D以上皆不对 二、填空题注教及反思 1形如_的式子叫做二次根式 2面积为a的正方形的边长为_ 3负数_平方根 三、综合提高题 1某工厂要制作一批体积为1m3的产品包
8、装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少? 2当x是多少时,+x2在实数范围内有意义? 3若+有意义,则=_ 4.使式子有意义的未知数x有( )个 A0 B1 C2 D无数5.已知a、b为实数,且+2=b+4,求a、b的值21.1 二次根式(2)第二课时 教学内容 1(a0)是一个非负数; 2()2=a(a0) 教学目标 理解(a0)是一个非负数和()2=a(a0),并利用它们进行计算和化简 通过复习二次根式的概念,用逻辑推理的方法推出(a0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a0);最后运用结论严谨解题 教学重难点关键 1重点:(a0
9、)是一个非负数;()2=a(a0)及其运用 2难点、关键:用分类思想的方法导出(a0)是一个非负数;用探究的方法导出()2=a(a0) 教学过程 一、复习引 注教及反思(学生活动)口答 1什么叫二次根式? 2当a0时,叫什么?当a0;(2)a20;(3)a2+2a+1=(a+1)0;(4)4x2-12x+9=(2x)2-22x3+32=(2x-3)20所以上面的4题都可以运用()2=a(a0)的重要结论解题 解:(1)因为x0,所以x+10 ()2=x+1 (2)a20,()2=a2 (3)a2+2a+1=(a+1)2 又(a+1)20,a2+2a+10 ,=a2+2a+1 (4)4x2-12
10、x+9=(2x)2-22x3+32=(2x-3)2 又(2x-3)204x2-12x+90,()2=4x2-12x+9例3在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3分析:(略) 五、归纳小结 本节课应掌握: 1(a0)是一个非负数; 2()2=a(a0);反之:a=()2(a0) 六、布置作业 第二课时作业设计 一、选择题 1下列各式中、,二次根式的个数是( ) A4 B3 C2 D1 2数a没有算术平方根,则a的取值范围是( ) 注教及反思 Aa0 Ba0 Ca0 Da=0 二、填空题 1(-)2=_ 2已知有意义,那么是一个_数 三、综合提高题 1计算(
11、1)()2 (2)-()2 (3)()2 (4)(-3)2 (5) 2把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3) (4)x(x0)3已知+=0,求xy的值21.1 二次根式(3)第三课时 教学内容 a(a0) 教学目标 理解=a(a0)并利用它进行计算和化简 通过具体数据的解答,探究=a(a0),并利用这个结论解决具体问题 教学重难点关键 1重点:a(a0) 2难点:探究结论 3关键:讲清a0时,a才成立 教学过程 一、复习引入 老师口述并板收上两节课的重要内容; 1形如(a0)的式子叫做二次根式; 注教及反思 2(a0)是一个非负数; 3()2a(a0) 那么,我们
12、猜想当a0时,=a是否也成立呢?下面我们就来探究这个问题 二、探究新知 (学生活动)填空: =_;=_;=_; =_;=_;=_ (老师点评):根据算术平方根的意义,我们可以得到: =2;=0.01;=;=;=0;= 因此,一般地:=a(a0) 例1 化简 (1) (2) (3) (4)分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可运用=a(a0)去化简解:(1)=3 (2)=4 (3)=5 (4)=3 三、巩固练习 教材P7练习2 四、应用拓展 例2 填空:当a0时,=_;当aa,则a可以是什么数? 注教及反思 分析:=a(a0),要填
13、第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a0时,=,那么-a0 (1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知=a,而a要大于a,只有什么时候才能保证呢?aa,即使aa所以a不存在;当aa,即使-aa,a0综上,a2,化简-分析:(略) 五、归纳小结 本节课应掌握:=a(a0)及其运用,同时理解当a- C= 二、填空题 1-=_ 2若是一个正整数,则正整数m的最小值是_ 三、综合提高注教及反思 1先化简再求值:当a=9时,求a+的值,甲乙两人的解答如下: 甲的解答为:原式=a+=a+(1-a)=1;乙的解
14、答为:原式=a+=a+(a-1)=2a-1=17两种解答中,_的解答是错误的,错误的原因是_2若1995-a+=a,求a-19952的值(提示:先由a-20000,判断1995-a的值是正数还是负数,去掉绝对值)3. 若-3x2时,试化简x-2+。212 二次根式的乘除第一课时 教学内容 (a0,b0),反之=(a0,b0)及其运用 教学目标 理解(a0,b0),=(a0,b0),并利用它们进行计算和化简 由具体数据,发现规律,导出(a0,b0)并运用它进行计算;利用逆向思维,得出=(a0,b0)并运用它进行解题和化简 教学重难点关键 重点:(a0,b0),=(a0,b0)及它们的运用 难点:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版九 级数 上册 教案
链接地址:https://www.31ppt.com/p-2355833.html