沪科版八年级数学上册第15章轴对称图形与等腰三角形教学ppt课件.ppt
《沪科版八年级数学上册第15章轴对称图形与等腰三角形教学ppt课件.ppt》由会员分享,可在线阅读,更多相关《沪科版八年级数学上册第15章轴对称图形与等腰三角形教学ppt课件.ppt(244页珍藏版)》请在三一办公上搜索。
1、,15.1 轴对称图形,第15章 轴对称图形与等腰三角形,导入新课,讲授新课,当堂练习,课堂小结,八年级数学上(HK)教学课件,第1课时 轴对称图形与轴对称,1.通过展示轴对称图形的图片,初步认识轴对称图形.2.能够识别简单的轴对称图形及其对称轴.(重点)3.理解轴对称图形和两个图形成轴对称这两个概念的区别与联系,探索轴对称现象共同特征.(重点、难点),导入新课,它们有什么共同的特点?,讲授新课,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.,轴对称图形,对称轴,a,m,做一做,下列哪些是属于轴对称图形?,A,B,C,你能举出一些
2、轴对称图形的例子吗?,A B C D E F G H I J K L M N O P Q R S T U V W X Y Z游戏规则:每人轮流按顺序报一个字母.如果你认为你所报的字母的形状是一个轴对称图形,你就迅速站起来报出,并说出它有几条对称轴;如果你认为你报的字母的形状不是轴对称图形,那么,你只需坐在座位上报就可以了.其他同学认真听,如果报错了,及时提醒.,全班总动员,A B C D E F G H I J K L M N O P Q R S T U V W X Y Z,做一做:找出下列各图形中的对称轴,并说明哪一个图形的对称轴最多.,想一想:下面的每对图形有什么共同特点?,A,A,B,C
3、,B,C,对称轴,对称轴,如果一个图形沿一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线就是它的对称轴.,例 下列四组图片中有哪几组图形成轴对称?,B,C,A,典例精析,知识要点,比较归纳,一个图形具有的特殊形状,两个全等图形的特殊的位置关系,1.都是沿着某条直线折叠后能重合.,2.可以互相转化.,辩一辩,6,6,这是轴对称图形还是两个图形成轴对称?,观察与思考1.动画(1)中的两个三角形有什么关系?2.动画(2)中的三角形是个什么图形?,(1),(2),思考:如图,ABC和ABC关于直线MN对称,点A,B,C分别是点A,B,C的对称点,线段AA,BB,C
4、C与直线MN有什么关系?,A,B,C,N,M,AAMN,BBMN,CCMN.,如图,MNAA,AP=AP.直线MN是线段AA 的垂直平分线.,如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.,线段垂直平分线的定义,经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.,图形轴对称的性质,一个轴对称图形的对称轴是否也具有上述性质呢?请你自己找一些轴对称图形来检验吧!,类似地,轴对称图形的对称轴,是任何一对对称点所连线段的垂直平分线.,轴对称图形的性质,如图,MN垂直平分AA,MN垂直平分BB.,例1 如图,一种滑翔伞的形状是左右成轴对称的四边形ABCD,其
5、中BAD150,B40,则BCD的度数是()A130 B150 C40 D65,方法归纳:轴对称是一种全等变换,在轴对称图形中求角度时,一般先根据轴对称的性质及已知条件,得出相关角的度数,然后再结合多边形的内角和或三角形外角的性质求解.,A,例2 如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为(),A4cm2B8cm2C12cm2D16cm2,解析:根据正方形的轴对称性可得,阴影部分的面积等于正方形ABCD面积的一半,正方形ABCD的边长为4cm,S阴影4228(cm2).故选B.,B,方法归纳:正方形是轴对称图形,在轴对称图形中求不规则的阴影部分的面积时,一般可以利用轴对称变换,
6、将其转换为规则图形后再进行计算.,问题1:如何画一个点的对称图形?,画出点A关于直线l的对称点A.,l,A,A,O,作法:,(1)过点A作l的垂线,垂足为点O.,(2)在垂线上截取OAOA.,点A就是点A关于直线l的对称点.,互动探究,问题2:如何画一条线段的对称图形?,已知线段AB,画出AB关于直线l的对称线段.,(图1),(图2),(图3),(B),想一想:如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?,例3 如图,已知ABC和直线l,作出与ABC关于直线l对称的图形.,分析:ABC可以由三个顶点的位置确定,只要能分别画出这三个顶点关于直线l的对称点,连接这些对称点
7、,就能得到要画的图形.,作法:(1)过点A画直线l的垂线,垂足为点O,在垂线上截取OA=OA,A就是点A关于直线l的对称点.,(3)连接AB,BC,CA,得到 ABC即为所求.,(2)同理,分别画出点B,C关于直线l的对称点B,C.,O,方法归纳,作轴对称图形的方法,几何图形都可以看作由点组成.对于某些图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.,例4 在33的正方形格点图中,有格点ABC和DEF,且ABC和DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的DEF.,(F),(D),E,(E),F,D,(F),D,E,(D),(E
8、),F,方法归纳:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来,1.下列表情图中,属于轴对称图形的是(),D,当堂练习,2.下列图形,对称轴最多的是(),A.长方形,B.正方形,C.角,D.圆,D,3.如图,ABC与DEF关于直线MN轴对称,则以下结论中错误的是()AABDF BB=E CAB=DE DAD的连线被MN垂直平分,A,4.如图,RtABC中,ACB=90,A=50,将其折叠,使点A落在边CB上A处,折痕为CD,则ADB为_.,10,5.如图,把下列图形补成关于直线l的对称图形.,6.(1)整个图形是轴对称图形
9、吗?对称轴是什么?(2)图中红色的三角形与哪些三角形成轴对称?(3)图形可以看作某两个图形成轴对称吗?,7.想一想:一辆汽车的车牌在水中的倒影如图所示,你能确定该车的车牌号码吗?,课堂小结,轴对称,轴对称,轴对称图形,定义,性质,定义,性质,画轴对称图形,原理,方法,线段的垂直平分线,对称轴是对称点连线段的垂直平分线.,(1)找特征点;(2)作垂线;(3)截取等长;(4)依次连线.,15.1 轴对称图形,第15章 轴对称图形与等腰三角形,导入新课,讲授新课,当堂练习,课堂小结,八年级数学上(HK)教学课件,第2课时 平面直角坐标系中的轴对称,1.探究在平面直角坐标系中关于x轴和y轴对称点的坐标
10、特点.(重点)2.能在平面直角坐标系中画出一些简单的关于x轴和y轴的对称图形.(重点)3.能运用坐标系中的轴对称特点解决简单的问题.(难点),导入新课,一位外国游客在天安门广场问小明询问西直门的位置,但他只知道东直门的位置,聪明的小明想了想,就准确的告诉了他,你能猜到小明是怎么做的吗?,如图,是一幅老北京城的示意图,其中西直门和东直门是关于中轴线对称的.如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系.根据如图所示的东直门的坐标,你能说出西直门的坐标吗?,讲授新课,问题1:已知点A和一条直线MN,你能画出这个点关于已知直线的对称点吗?,互动探究,A,A,M,N,A就是点A
11、关于直线MN的对称点.,O,(2)延长AO至A,使OA=AO.,(1)过点A作AOMN,垂足为点O,,问题2:如图,在平面直角坐标系中你能画出点A关于x轴的对称点吗?,A(2,3),A(2,-3),做一做:在平面直角坐标系中画出下列各点关于x轴的对称点.,C(3,-4),C(3,4),B(-4,2),B(-4,-2),(x,y),关于 x 轴对称,(,),x,-y,知识归纳,关于x轴对称的点的坐标的特点是:,横坐标相等,纵坐标互为相反数.,(简称:横轴横相等),练一练:1.点P(-5,6)与点Q关于x轴对称,则点Q的坐标为_.2.点M(a,-5)与点N(-2,b)关于x轴对称,则a=_,b=_
12、.,(-5,-6),-2,5,问题3:如图,在平面直角坐标系中你能画出点A关于x轴的对称点吗?,A(2,3),A(-2,3),做一做:在平面直角坐标系中画出下列各点关于x轴的对称点.,C(3,-4),C(-3,-4),B(-4,2),B(4,2),(x,y),关于 y轴对称,(,),-x,y,知识归纳,关于y轴对称的点的坐标的特点是:,横坐标互为相反数,纵坐标相等.,(简称:纵轴纵相等),练一练:1.点P(-5,6)与点Q关于y轴对称,则点Q的坐标为_.2.点M(a,-5)与点N(-2,b)关于y轴对称,则a=_,b=_.,(5,6),2,-5,例1 如图,四边形ABCD的四个顶点的坐标分别为
13、A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD关于y轴和x轴对称的图形.,O,对于这类问题,只要先求出已知图形中的一些特殊点(如多边形的顶点)的对应点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形.,知识要点,在坐标系中作已知图形的对称图形,(一找二描三连),平面直角坐标系中,ABC的三个顶点坐标分别为A(0,4),B(2,4),C(3,1).(1)试在平面直角坐标系中,标出A、B、C三点;(2)若ABC与ABC关于x轴对称,画出ABC,并写出A、B、C的坐标.,针对训练:,A(0,4),B(2,4),C(3,-1),A(0,-4),B(2,
14、-4),C(3,1),解:如图所示:,例2 已知点A(2ab,5a),B(2b1,ab)(1)若点A、B关于x轴对称,求a、b的值;(2)若A、B关于y轴对称,求(4ab)2018的值,解:(1)点A、B关于x轴对称,2ab2b1,5aab0,解得a8,b5;(2)A、B关于y轴对称,2ab2b10,5aab,解得a1,b3,(4ab)20181.,例3 已知点P(a1,2a1)关于x轴的对称点在第一象限,求a的取值范围,解:依题意得P点在第四象限,,解得,即a的取值范围是,方法总结:解决此类题,一般先根据点的坐标关于坐标轴对称,判断出点或对称点所在的象限,再由各象限内坐标的符号,列不等式(组
15、)求解,当堂练习,1.平面直角坐标系内的点A(-1,2)与点B(-1,-2)关于()Ay轴对称 Bx轴对称 C原点对称 D直线y=x对称,2.在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A(-4,-2)B(2,2)C(-2,2)D(2,-2),D,B,3.设点M(x,y)在第二象限,且|x|=2,|y|=3,则点M关于y轴的对称点的坐标是()A(2,3)B(-2,3)C(-3,2)D(-3,-2),A,4.如图,在平面直角坐标系中,点P(-1,2)关于直线x=1的对称点的坐标为()A(1,2)B(2,2)C(3,2)D(4,2),C,
16、5.已知点P(2a+b,-3a)与点P(8,b+2).若点P与点P关于x轴对称,则a=_,b=_.若点P与点P关于y轴对称,则a=_,b=_.,2,4,6,-20,6.若|a-2|+(b-5)2=0,则点P(a,b)关于x轴对称的点的坐标为_.,(2,-5),7.已知ABC的三个顶点的坐标分别为A(-3,5),B(-4,1),C(-1,3),作出ABC关于y轴对称的图形.,解:点A(-3,5),B(-4,1),C(-1,3),关于y轴的对称点分别为A(3,5),B(4,1),C(1,3).依次连接AB,BC,CA,就得到ABC关于y轴对称的ABC.,x,y,8.已知点A(2a+b,-4),B(
17、3,a-2b)关于x轴对称,求点C(a,b)在第几象限?,解:点A(2a+b,-4),B(3,a-2b)关于x轴对称,2a+b=3,a-2b=4,解得a=2,b=-1点C(2,-1)在第四象限,拓展提升,9.在平面直角坐标系中,规定把一个正方形先沿着x轴翻折,再向右平移2个单位称为1次变换如图,已知正方形ABCD的顶点A、B的坐标分别是(-1,-1)、(-3,-1),把正方形ABCD经过连续7次这样的变换得到正方形ABCD,求B的对应点B的坐标.,解:正方形ABCD,点A、B的坐标分别是(-1,-1)、(-3,-1),根据题意,得第1次变换后的点B的对应点的坐标为(-3+2,1),即(-1,1
18、),第2次变换后的点B的对应点的坐标为(-1+2,-1),即(1,-1),第3次变换后的点B的对应点的坐标为(1+2,1),即(3,1),第n次变换后的点B的对应点的为:当n为奇数时为(2n-3,1),当n为偶数时为(2n-3,-1),把正方形ABCD经过连续7次这样的变换得到正方形ABCD,则点B的对应点B的坐标是(11,1),课堂小结,用坐标表示轴对称,关于坐标轴对称的点的坐标特征,在坐标系中作已知图形的对称图形,关于x轴对称,横同纵反;关于y轴对称,横反纵同,关键要明确点关于x轴、y轴对称点的坐标变化规律,然后正确描出对称点的位置,15.2 线段的垂直平分线,第15章 轴对称图形与等腰三
19、角形,导入新课,讲授新课,当堂练习,课堂小结,八年级数学上(HK)教学课件,1.理解和掌握线段垂直平分线的性质;(难点)2.通过观察、实验、猜测、验证与交流等活动,初步形成数学学习的方法;(难点)3.在数学学习的活动中,养成良好的思维习惯,学习目标,导入新课,情境引入,市政府为了方便居民的生活,计划在三个住宅小区A、B、C之间修建一个购物中心,试问,该购物中心应建于何处才能使得它到三个小区的距离相等?,A,B,C,讲授新课,问题:怎样作出线段的垂直平分线?,做一做:在半透明纸上画一条线段AB,折纸使A与B重合,得到的折痕l就是线段AB的垂直平分线.想一想:这样折纸怎么就是垂直平分线呢?,A,B
20、,A(B),A,B,l,O,l,C,O,作法:,(1)分别以点A,B为圆心,以大于 AB的长为半径作弧,两弧交于C,D两点.,(2)作直线CD.CD即为所求.,特别说明:这个作法实际上就是线段垂直平分线的尺规作图,我们也可以用这种方法确定线段的中点.,如图,直线l垂直平分线段AB,P1,P2,P3,是l 上的点,请你量一量线段P1A,P1B,P2A,P2B,P3A,P3B的长,你能发现什么,请猜想点P1,P2,P3,到点A 与点B 的距离之间的数量关系,探究发现,P1A _P1B,P2A _ P2B,P3A _ P3B,猜想:点P1,P2,P3,到点A 与点B 的距离分别相等,命题:线段垂直平
21、分线上的点和这条线段两个端点的距离相等.,由此你能得到什么结论?,你能验证这一结论吗?,已知:如图,直线lAB,垂足为C,AC=CB,点P 在l 上求证:PA=PB,证明:lAB,PCA=PCB又 AC=CB,PC=PC,PCA PCB(SAS)PA=PB,验证结论,例1 如图,在ABC中,ABAC20cm,DE垂直平分AB,垂足为E,交AC于D,若DBC的周长为35cm,则BC的长为(),A5cmB10cmC15cmD17.5cm,典例精析,C,解析:DBC的周长为BCBDCD35cm,又DE垂直平分AB,ADBD,故BCADCD35cm.ACADDC20cm,BC352015(cm).故选
22、C.,方法归纳:利用线段垂直平分线的性质,实现线段之间的相互转化,从而求出未知线段的长,练一练:1.如图所示,直线CD是线段AB的垂直平分线,点P为直线CD上的一点,且PA=5,则线段PB的长为()A.6 B.5 C.4 D.3,2.如图所示,在ABC中,BC=8cm,边AB的垂直平分线交AB于点D,交边AC于点E,BCE的周长等于18cm,则AC的长是.,B,10cm,图,例2 如图,已知点A、点B以及直线l.(1)用尺规作图的方法在直线l上求作一点P,使PAPB.(保留作图痕迹,不要求写出作法);(2)在(1)中所作的图中,若AMPN,BNPM,求证:MAPNPB.,解:(1)如图所示:,
23、(2)在AMP和BNP中,AM=PN,APBP,PMBN,AMPPNB(SSS),MAPNPB.,P,例3 如图,在四边形ABCD中,ADBC,E为CD的中点,连接AE、BE,BEAE,延长AE交BC的延长线于点F.求证:(1)FCAD;(2)ABBCAD.,解析:(1)根据ADBC可知ADCECF,再根据E是CD的中点可求出ADEFCE,根据全等三角形的性质即可解答(2)根据线段垂直平分线的性质判断出ABBF即可,证明:(1)ADBC,ADCECF.E是CD的中点,DEEC.又AEDCEF,ADEFCE,FCAD.(2)ADEFCE,AEEF,ADCF.BEAE,BE是线段AF的垂直平分线,
24、ABBFBCCF.ADCF,ABBCAD.,定理:线段垂直平分线上的点到线段两端的距离相等.,逆命题,到线段两端距离相等的点在线段的垂直平分线上.,它是真命题吗?你能证明吗?,已知:PA=PB,求证:点P在线段AB的垂直平分线上.,证明:作PCAB,垂足为C.,ACP=BCP=90.,在RtACP和RtBCP中,,RtACPRtBCP(HL),,AC=BC,,点P在线段AB的垂直平分线上.,PA=PB,PC=PC,,知识要点,线段垂直平分线的判定,到线段两端距离相等的点在线段的垂直平分线上,应用格式:PA=PB,点P 在AB 的垂直平分线上,作用:判断一个点是否在线段的垂直平分线上.,例4 如
25、图,已知ABC的边AB,AC的垂直平分线相交于点P.求证:点P在BC的垂直平分线上.,B,C,A,P,证明:连接PA,PB,PC.点P在AB,AC的垂直平分线上,PA=PB,PA=PC,(线段垂直平分线上的点到线段两端距离相等)PB=PC,(等式性质)点P在BC的垂直平分线上.(与线段两端距离相等的点在这条线段的垂直平分线上),总结归纳,三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等.,现在你能回答讲课前提出的问题吗?你知道购物中心应该建在何处了吗?,例5 已知:如图,点E是AOB的平分线上一点,ECOA,EDOB,垂足分别为C,D,连接CD.求证:OE是CD的垂直平分线.,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 沪科版 八年 级数 上册 15 轴对称 图形 等腰三角形 教学 ppt 课件
链接地址:https://www.31ppt.com/p-2335380.html