机器人学基础 第4章 机器人动力学课件.ppt
《机器人学基础 第4章 机器人动力学课件.ppt》由会员分享,可在线阅读,更多相关《机器人学基础 第4章 机器人动力学课件.ppt(51页珍藏版)》请在三一办公上搜索。
1、1,中南大学蔡自兴,谢 斌zxcai,2010,机器人学基础第四章 机器人动力学,1,Fundamentals of Robotics,2,Contents,Introduction to Dynamics Rigid Body Dynamics Lagrangian Formulation Newton-Euler Formulation Articulated Multi-Body Dynamics,2,Ch.4 Manipulator Dynamics,3,3,Ch.4 Manipulator Dynamics,Introduction,Ch.4 Manipulator Dynamics
2、,Manipulator Dynamics considers the forces required to cause desired motion.Considering the equations of motion arises from torques applied by the actuators,or from external forces applied to the manipulator.,4,Ch.4 Manipulator Dynamics,Two methods for formulating dynamics model:Newton-Euler dynamic
3、 formulationNewtons equation along with its rotational analog,Eulers equation,describe how forces,inertias,and accelerations relate for rigid bodies,is a force balance approach to dynamics.Lagrangian dynamic formulationLagrangian formulation is an energy-based approach to dynamics.,Ch.4 Manipulator
4、Dynamics,5,Ch.4 Manipulator Dynamics,There are two problems related to the dynamics of a manipulator that we wish to solve.Forward Dynamics:given a torque vector,calculate the resulting motion of the manipulator,.This is useful for simulating the manipulator.Inverse Dynamics:given a trajectory point
5、,find the required vector of joint torques,.This formulation of dynamics is useful for the problem of controlling the manipulator.,Ch.4 Manipulator Dynamics,6,Contents,Introduction to Dynamics Rigid Body Dynamics Lagrangian Formulation Newton-Euler Formulation Articulated Multi-Body Dynamics,6,Ch.4
6、Manipulator Dynamics,7,7,4.1 Dynamics of a Rigid Body 刚体动力学,Langrangian Function L is defined as:Dynamic Equation of the system(Langrangian Equation):where qi is the generalized coordinates,represent corresponding velocity,Fi stand for corresponding torque or force on the ith coordinate.,4.1 Dynamic
7、s of a Rigid Body,Kinetic Energy,Potential Energy,8,4.1.1 Kinetic and Potential Energy of a Rigid Body,8,图4.1 一般物体的动能与位能,4.1 Dynamics of a Rigid Body,4.1 Dynamics of a Rigid Body,9,9,is a generalized coordinate Kinetic Energy due to(angular)velocity Kinetic Energy due to position(or angle)Dissipatio
8、n Energy due to(angular)velocity Potential Energy due to position External Force or Torque,4.1.1 Kinetic and Potential Energy of a Rigid Body,4.1 Dynamics of a Rigid Body,10,10,x0 and x1 are both generalized coordinates,4.1.1 Kinetic and Potential Energy of a Rigid Body,4.1 Dynamics of a Rigid Body,
9、Written in Matrices form:,11,11,Kinetic and Potential Energy of a 2-links manipulator,Kinetic Energy K1 and Potential Energy P1 of link 1,图4.2 二连杆机器手(1),4.1.1 Kinetic and Potential Energy of a Rigid Body,4.1 Dynamics of a Rigid Body,12,12,Kinetic Energy K2 and Potential Energy P2 of link 2,where,4.1
10、.1 Kinetic and Potential Energy of a Rigid Body,4.1 Dynamics of a Rigid Body,13,Total Kinetic and Potential Energy of a 2-links manipulator are,13,4.1.1 Kinetic and Potential Energy of a Rigid Body,4.1 Dynamics of a Rigid Body,14,Contents,Introduction to Dynamics Rigid Body Dynamics Lagrangian Formu
11、lation Newton-Euler Formulation Articulated Multi-Body Dynamics,14,Ch.4 Manipulator Dynamics,15,15,Lagrangian Formulation Lagrangian Function L of a 2-links manipulator:,4.1 Dynamics of a Rigid Body,4.1.2 Two Solutions for Dynamic Equation,16,16,4.1.2 Two Solutions for Dynamic Equation,Lagrangian Fo
12、rmulation Dynamic Equations:,Written in Matrices Form:,有效惯量(effective inertial):关节i的加速度在关节i上产生的惯性力,4.1 Dynamics of a Rigid Body,17,Written in Matrices Form:,17,Lagrangian Formulation Dynamic Equations:,耦合惯量(coupled inertial):关节i,j的加速度在关节j,i上产生的惯性力,4.1.2 Two Solutions for Dynamic Equation,4.1 Dynamic
13、s of a Rigid Body,18,Written in Matrices Form:,18,Lagrangian Formulation Dynamic Equations:,向心加速度(acceleration centripetal)系数关节i,j的速度在关节j,i上产生的向心力,4.1.2 Two Solutions for Dynamic Equation,4.1 Dynamics of a Rigid Body,19,Written in Matrices Form:,19,Lagrangian Formulation Dynamic Equations:,哥氏加速度(Cor
14、iolis accelaration)系数:关节j,k的速度引起的在关节i上产生的哥氏力(Coriolis force),4.1.2 Two Solutions for Dynamic Equation,4.1 Dynamics of a Rigid Body,20,Written in Matrices Form:,20,Lagrangian Formulation Dynamic Equations:,重力项(gravity):关节i,j处的重力,4.1.2 Two Solutions for Dynamic Equation,4.1 Dynamics of a Rigid Body,21
15、,21,对上例指定一些数字,以估计此二连杆机械手在静止和固定重力负载下的 T1 和 T2 的数值。取 d1=d2=1,m1=2,计算m2=1,4和100(分别表示机械手在地面空载、地面满载和在外空间负载的三种不同情况;在外空间由于失重而允许有较大的负载)三个不同数值下各系数的数值。,Lagrangian Formulation of Manipulator Dynamics,4.1 Dynamics of a Rigid Body,22,22,表4.1给出这些系数值及其与位置 的关系。表4.1,Lagrangian Formulation of Manipulator Dynamics,注意:
16、有效惯量的变化将对机械手的控制产生显著影响!,4.1 Dynamics of a Rigid Body,23,Contents,Introduction to Dynamics Rigid Body Dynamics Lagrangian Formulation Newton-Euler Formulation Articulated Multi-Body Dynamics,23,Ch.4 Manipulator Dynamics,24,4.1 Dynamics of a Rigid Body,4.1.2 Two Solutions for Dynamic Equation,Newton-Eu
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机器人学基础 第4章 机器人动力学课件 机器人学 基础 机器人 动力学 课件
链接地址:https://www.31ppt.com/p-2335062.html