直流电机的介绍中英文翻译资料.doc
《直流电机的介绍中英文翻译资料.doc》由会员分享,可在线阅读,更多相关《直流电机的介绍中英文翻译资料.doc(15页珍藏版)》请在三一办公上搜索。
1、Introduction to D.C. MachinesD.C. machines are characterized by their versatility. By means of various combinations of shunt-, series-, and separately excited field windings they can be designed to display a wide variety of volt-ampere or speed-torque characteristics for both dynamic and steady stat
2、e operation. Because of the ease with which they can be controlled, systems of D.C. machines are often used in applications requiring a wide range of motor speeds or precise control of motor output.The essential features of a D.C. machine are shown schematically. The stator has salient poles and is
3、excited by one or more field coils. The air-gap flux distribution created by the field winding is symmetrical about the centerline of the field poles. This is called the field axis or direct axis.As we know, the A.C. voltage generated in each rotating armature coil is converted to D.C. in the extern
4、al armature terminals by means of a rotating commutator and stationary brushes to which the armature leads are connected. The commutator-brush combination forms a mechanical rectifier, resulting in a D.C. armature voltage as well as an armature m.m.f. Wave then is 90 electrical degrees from the axis
5、 of the field poles, i.e. in the quadrature axis. In the schematic representation the brushes are shown in quadrature axis because this is the position of the coils to which they are connected. The armature m.m.f. Wave then is along the brush axis as shown. (The geometrical position of the brushes i
6、n an actual machine is approximately 90 electrical degrees from their position in the schematic diagram because of the shape of the end connections to the commutator.)The magnetic torque and the speed voltage appearing at the brushes are independent of the spatial waveform of the flux distribution;
7、for convenience we shall continue to assume a sinusoidal flux-density wave in the air gap. The torque can then be found from the magnetic field viewpoint.The torque can be expressed in terms of the interaction of the direct-axis air-gap flux per pole and space-fundamental component of the armature m
8、.m.f.wave. With the brushes in the quadrature axis the angle between these fields is 90 electrical degrees, and its sine equals unity. For a pole machine (1-1)In which the minus sign gas been dropped because the positive direction of the torque can be determined from physical reasoning. The space fu
9、ndamental of the sawtooth armature m.m.f.wave is times its peak. Substitution in above equation then gives (1-2)Where, =current in external armature circuit; =total number of conductors in armature winding; =number of parallel paths through winding.And (1-3)is a constant fixed by the design of the w
10、inding.The rectified voltage generated in the armature has already been discussed before for an elementary single-coil armature. The effect of distributing the winding in several slots is shown in figure. In which each of the rectified sine wave is the voltage generated in one of the coils, commutat
11、ion taking place at the moment when the coil sides are in the neutral zone. The generated voltage as observed from the brushes and is the sum of the rectified voltages of all the coils in series between brushes and is shown by the rippling line labeled in figure. With a dozen or so commutator segmen
12、ts per pole, the ripple becomes very small and the average generated voltage observed from the brushes equals the sum of the average values of the rectified coil voltages. The rectified voltage between brushes, Known also as the speed voltage, is (1-4)where is the design constant. The rectified volt
13、age of a distributed winding has the same average value as that of a concentrated coil. The difference is that the ripple is greatly reduced.From the above equations, with all variable expressed in SI units, (1-5)This equation simply says that the instantaneous power associated with the speed voltag
14、e equals the instantaneous mechanical power with the magnetic torque. The direction of power flow being determined by whether the machine is acting as a motor or generator. The direct-axis air-gap flux is produced by the combined m.m.f. of the field windings. The flux-m.m.f. Characteristic being the
15、 magnetization curve for the particular iron geometry of the machine. In the magnetization curve, it is assumed that the armature m.m.f. Wave is perpendicular to the field axis. It will be necessary to reexamine this assumption later in this chapter, where the effects of saturation are investigated
16、more thoroughly. Because the armature e.m.f. is proportional to flux times speed, it is usually more convenient to express the magnetization curve in terms of the armature e.m.f. at a constant speed . The voltage for a given flux at any other speed is proportional to the speed, i.e. (1-6)There is th
17、e magnetization curve with only one field winding excited. This curve can easily be obtained by test methods, no knowledge of any design details being required.Over a fairly wide range of excitation the reluctance of the iron is negligible compared with that of the air gap. In this region the flux i
18、s linearly proportional to the total m.m.f. of the field windings, the constant of proportionality being the direct-axis air-gap permeance.The outstanding advantages of D.C. machines arise from the wide variety of operating characteristics that can be obtained by selection of the method of excitatio
19、n of the field windings. The field windings may be separately excited from an external D.C. source, or they may be self-excited; i.e. the machine may supply its own excitation. The method of excitation profoundly influences not only the steady-state characteristics, but also the dynamic behavior of
20、the machine in control systems. The connection diagram of a separately excited generator is given. The required field current is a very small fraction of the rated armature current. A small amount of power in the field circuit may control a relatively large amount of power in the armature circuit; i
21、.e. the generator is a power amplifier. Separately excited generators are often used in feedback control systems when control of the armature voltage over a wide range is required. The field windings of self-excited generators may be supplied in three different ways. The field may be connected in se
22、ries with the armature, resulting in a series generator. The field may be connected in shunt with the armature, resulting in a shunt generator, or the field may be in two sections, one of which is connected in series and the other in shunt with the armature, resulting in a compound generator. With s
23、elf-excited generators residual magnetism must be present in the machine iron to get the self-excitation process started.In the typical steady-state volt-ampere characteristics, constant-speed prime movers being assumed. The relation between the steady state generated e.m.f. and the terminal voltage
24、 is (1-7)where is the armature current output and is the armature circuit resistance. In a generator, is larger than and the electromagnetic torque is a counter torque opposing rotation.The terminal voltage of a separately excited generator decreases slightly with increase in the load current, princ
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直流电机 介绍 中英文 翻译 资料
链接地址:https://www.31ppt.com/p-2325872.html