毕赤酵母植酸酶相关毕业论文1.doc
《毕赤酵母植酸酶相关毕业论文1.doc》由会员分享,可在线阅读,更多相关《毕赤酵母植酸酶相关毕业论文1.doc(29页珍藏版)》请在三一办公上搜索。
1、毕赤酵母植酸酶相关目 录1 绪论11.1植酸与植酸酶11.2 植酸酶的分类31.3 植酸酶的来源41.4 植酸酶的基本酶学性质61.5 植酸酶的作用机理61.6 植酸酶的应用意义7第2章 植酸酶发酵过程主要影响因素研究92.1 试验材料112.2 试验方法112.3 试验结果与讨论142.4 本章小结25结 论26参考文献27致谢291 绪论自从人类畜牧业产生以来,最大限度的发挥家畜的生产潜力和生产价值一直是生产者们和动物营养科学家们共同追求的目标,因此,在配置家畜饲料时,他们从来不考虑家畜营养物质和矿物元素的排泄量,而导致大量的营养物质和矿物元素随动物的粪便排出体外。在广大农村,分散而且低密
2、度的圈养条件下,动物的排泄物是一种非常好的有机肥料,但随着畜牧业大力发展,畜牧业生产集约化的程度大幅度的提高,饲养密度和饲养规模急剧增加,必然导致在较小的面积上产生出大料的排泄物。这些排泄物不得到合理的分散和处理,便会对周围的环境造成严重的污染。猪鸡等家畜,由于是单胃动物,胃中缺乏植酸酶,对植物性饲料中的磷的利用率非常低,为满足单胃动物对磷的需求量,生产中不得不在饲料中添加大量的无机磷,结果大量的未消化的无机磷随动物粪便排泄稻周围环境中,对生态环境造成了很严重的威胁。目前,国内外大量的实验证明,在家畜的饲料中添加植酸酶可以提高家畜对磷的利用率,从而可以减少向环境中排放的磷。植酸酶是一种可作为饲
3、料及食品添加剂的新型酶制剂,可以分解动物饲料中的植酸磷,释放出动物能直接吸收的利用的磷,可以有效减少单胃动物的排便中磷的含量,因此可以减少磷对环境的污染。在饲料中添加少量的植酸酶可以代替添加大量价格昂贵的无机磷酸钙,使饲料成本降低,而饲料的综合利用率提高。植酸酶还能消除植酸对多种金属离子的螯合作用,可以提高动物对植物蛋白和多种矿物元素的利用率以及植物性饲料的营养价值。植酸酶因其多方面的应用特点,植酸酶已成为饲料、医学、人类营养、食品工业、植物生理学和植物育种等领域关注的焦点。1.1植酸与植酸酶1.1.1 植酸磷是动植物的重要元素,作为一种必须的矿物元素在动植物营养中发挥着非常重要的作用磷是动植
4、物核酸、核蛋白和磷脂的重要成分,并与蛋白质的合成、细胞的分裂、细胞的生长有着密切关系。磷是许多辅酶如NAD+、NADP+等的成分,也是ATP和ADP的成分。磷在机体内参与碳水化合物的代谢和运输,如在光合作用和呼吸作用的生理过程中,糖的合成、转化、降解大多数是在磷酸化以后才起反应的。磷对氮的代谢有重要作用,如硝酸还原有NAD和FAD的参与,而磷酸吡哆醛和磷酸吡哆胺则参与氨基酸的转化。磷还与脂肪转化有关,脂肪代谢需要NADPH、ATP、CoA和NAD+的参与。68%-80%的磷在植物性饲料中都是以植酸的方式存在1。植酸( phy tic acid, 简称PA) 又名肌醇六磷酸, 是维生素B 族的一
5、种肌醇六磷酸酯, 化学名环己六醇- 1, 2, 3, 4, 5, 6- 六磷酸二氢酯。由1分子肌醇和6分子磷酸结合而成,分子式为C6H18024P6,通式为C6H6OP(OH)26分子量为660.8 。植酸广泛以植酸钙镁钾盐存在于植物种子内,是许多植物组织中磷的主要存在方式,占总磷的60%-90% 。植酸对大多数金属离子有极强的络合能力,络合能力与EDTA类似。植酸二价以上金属盐均可定性沉淀2。在饲料中,植物性的饲料含有约1% 4%的磷, 其中60% 80% 的磷通常是以植酸磷的形式稳定的存在于植酸盐复合物中, 这些矿物磷只有在植酸磷被分解游离的情况下才能供家畜吸收及利用, 单胃动物, 如猪和
6、家禽消化道内缺乏植酸酶, 因而对磷的吸收率非常低。另外植酸不仅能够螯合Ca2+ 、Mg 2+ 、Zn2+ 、Fe2+ 等二价金属离子, 降低了矿物质在肠道中的吸收;植酸还能与蛋白质和氨基酸等螯合,抑制体内消化酶的酶活性。植酸的存在大大降低了蛋白质及脂肪物质等营养物质的消化和吸收,使多种微量元素和常量元素的利用率降低,降低了植物性饲料的整体生物作用。1.1.2 植酸酶植酸酶(phytase),是催化植酸盐及植酸水解成为磷酸和肌醇的一类生物酶的总称,系统名称是肌醇六磷酸酶3,是特殊的酸性磷酸酶,是一种磷酸单脂水解酶,具有特殊的空间结构能水解植酸释放出肌醇和无机磷。在植物性的动物饲料中,大部分的磷酸
7、盐是以植酸的形式存在的。而单胃动物缺少分解植酸的植酸酶。为了改良磷酸盐的生物利用度可以在植物性饲料中添加少量的异种植酸酶,减少植酸的抗营养作用;大量减少无机磷在环境中的排泄,由此可以降低农业生态对环境造成的负担,并且大大减缓了江,河,湖泊及海洋的富营养化;同时也大大减少了动物饲料对无机磷的添加量,然而无机磷是一种不可再生的矿物质资源。为保护环境目前欧洲十几个国家规定不添加植酸酶的饲料不准上市4。1.2 植酸酶的分类1.2.1 基于最适pH 和立体专一性的植酸酶分类植酸化学名为环己六醇- 1, 2, 3, 4, 5, 6- 六磷酸二氢酯5。因植酸分子的特殊立体构象, 植酸酶水解植酸时具有立体专一
8、性,根据立体的专一性, 由国际纯粹与应用化学联合会-国际生物化学与分子生物学联合会(IUPAC-IUBMB)目前承认了三类常见的植酸酶(3-植酸酶、5-植酸酶和6-植酸酶)。3-植酸酶开始水解植酸时首先释放出C3 位磷酸基团, 随后逐渐释放其它的磷酸基团, 5-植酸酶和6-植酸酶分别从C5和C6位开始水解植酸。微生物和植物绝大多数分别产3-植酸酶以及6-植酸酶。最适PH是各种酶的基本属性之一,根据酶活性最适pH值不同,植酸酶也可大致分为两类:酸性植酸酶和碱性植酸酶,酸性植酸酶在pH值5.0左右具有较高活性,碱性植酸酶在pH值接近8.0的时候有较高活性。除了芽孢杆菌和百合花粉外,大部分的生物植酸
9、酶和植物植酸酶都属于酸性植酸酶,为了适应畜禽的胃肠酸性环境, 酸性植酸酶一直受到研究者的青睐和开发,因此酸性植酸酶在饲料和人类食品的适用性中比碱性植酸酶更广泛的底物特异性而被广泛关注。1.2.2 基于结构和催化机理的植酸酶分类按结构的不同,可以将酸性植酸酶划分为有代表性的组氨酸酸性磷酸酶(HAP)-螺旋植酸酶(BPP),紫色酸性磷酸酶(PAP),半胱氨酸磷酸酶植酸酶(CPhy)。 (1)组氨酸酸性磷酸酶(HAP)大多数知名的植酸酶都是HAP,这个类的所有成员都有一个共同的活性位点保守序列RHGXRXP和一个水解磷酸单脂的两步作用的机制。Wyss 和他的同事通过比较几种来源于真菌的植酸酶的水解的
10、特性,提出了 2个类别的HAP 植酸酶:一类底物特异活性比较宽,但是特异活性对植酸的比较低;第二类底物比较窄特异活性,但是比较高特异活性对植酸。(2)- 螺旋植酸酶(BPP)与HAP不同,BPP是最近发现的一类有着特殊水解机制的酶。BPP基因已经从Bacillius subtili和 Bacillus amyloliquefaciens中获得。该分子的三维模型近似于有6个叶片螺旋的基本结构。搜索蛋白数据库,数据显示没有其它的目前已知的磷酸酶具有这种的结构。由于Ca2+的束缚,而具有特定热水解活性和稳定性。BPP有2个束缚位点的磷酸盐,对它的底物的水解出现在邻近的“亲和位点”和“剪切位点”, “
11、亲和位点”加强了对底物亲和力。Ca2+创造了一个有利使束缚变得容易的静电环境。然而,目前与BPP对应的磷酸酶已知的没有,是否在其它的真菌或者细菌中发现还有待于确定。 (3) 紫色酸性植酸酶(PAP)已经从发芽的黄豆种子中分离出来了另一种植酸酶Gmphy。Gmphy 有着活性位点保守序列的紫色酸性磷酸酶。它的水解机制和三维结构已经非常明确了。对基因数据库搜索结果示,在植物,哺乳动物,真菌和细菌中显示了类似于PAP的序列。纯化的Gmphy 的大小估计在7072kda,和其它植物来源的PAP 的分子大小相近。但是Gmphy 是仅知已报道的有较高植酸酶的活性的PAP。(4)半胱氨酸磷酸酶植酸酶(CPh
12、y)目前发现仅存于瘤胃微生物含有半胱氨酸磷酸酶植酸酶。单胃动物因体内缺乏内源性植酸酶所以不能利用植酸。调查厌氧瘤胃微生物时,Yanke 等首先发现一株S. ruminantium 具有植酸酶活性。经过研究表明是一个单体蛋白的植酸酶, 约为46 kD, 最为适应的pH 4.04.5, 最为适应的温度50C55C, 受铁离子等离子的抑制,随后的研究催化机理和蛋白晶体结构揭示这个植酸酶既不属于- 螺旋植酸酶也不属于组氨酸酸性磷酸酶,而是半胱氨酸磷酸酶植酸酶超家族的一种, 它的推断氨基酸序列包含活性部位基元HCXXGXXR (T/S), 并且与半胱氨酸磷酸酶植酸酶类群的成员蛋白酪氨酸磷酸酶(Prote
13、in tyrosinephosphatase, PTP)具有显着相似性。瘤胃微生物是生活在反刍动物胃肠的一类有益共生菌, 所分泌的植酸酶和纤维素酶等在反刍动物的营养利用中起重要作用。Hong 等利用S. ruminantium植酸酶基因SrPf6 构建的转基因水稻, 其萌发种子在pH 2.06.0 时的植酸酶活性是非转化子的4060 倍, 这为单胃动物饲料开发开辟了新的思路。1.3 植酸酶的来源植酸酶在自然界分布非常广泛,它广泛存在于动物植物组织中,也存在于微生物(细菌,真菌和酵母)。1.3.1 植物植酸酶最早发现的植酸酶是在植物中,大多存在于花粉和种子中,其活性因为种类的差别而又很大不同。如
14、在豆类,谷类,和油料作物,其活力一般都比较低。种子中的植酸酶把植酸磷水解分为无机磷酸盐和肌醇,为种子的发芽及幼苗的生长提供了必要的营养物质。植酸酶最早是在1907年在植物中发现的,因此早期的研究都集中在植物和动物器官上。植物植酸酶分为两种,大部分的植物植酸酶是从肌醇的第六位碳点上开始水解,因此是6-植酸酶,一般存在于植物种子中;另一种存在于植物的组织中,为3-植酸酶。目前已知可从多种植物中分离出植酸酶。1.3.2 动物植酸酶动物植酸酶存在于哺乳动物的红血球和血浆原生质中。但一般而言,动物植酸酶含量较少而且活性低,多胃动物瘤胃微中生物可生产植酸酶,因此可利用植酸盐,单胃动物则难以利用植酸盐。1.
15、3.3 微生物植酸酶微生物来源的植酸酶,1968年,Shine等从68个土样中对2000个菌株进行考察发现,在所得的22株黑曲霉中有21株能产生植酸酶,确定第一个被分离纯化的植酸酶来源于土曲霉。从此以后,陆续从十几种微生物中分离得到植酸酶。微生物植酸酶活性最强的是真菌,特别是Aspergilli 属的真菌。由于动物植酸酶含量非常低,然而植物植酸酶在加工、贮藏等过程中结构易被破坏,而且难以提纯;微生物植酸酶作用范围广泛,较为稳定,规模化生产简单,因此,近几年的研究都集中于微生物植酸酶。产植酸酶的微生物有丝状真菌、酵母和细菌等。就商业化生产植酸酶而言,微生物是最有前景的7。目前,用微生物产植酸酶的
16、工艺主要有固体发酵(sSF) 和液体发酵(sMF) 两种。抉择某一种特定生产工艺时应考虑底物特性、营养素的利用率等、培养条件以及菌株类型因素,这些都是影响发酵产量的重要因素。Stockmann 等报道了在限制氧气的条件下由多形汉逊酵母经液体发酵生产植酸酶,研究数据发现,以葡萄糖作为培养基预先培养菌株在限制氧气的条件下, 使植酸酶的产量提高了大约25%,而且消除了大约20h的发酵延滞期,然而在没有限制氧气条件下通常是存在延滞期的。已有3 种不同的方法可以利用无花果曲霉生产植酸酶,即液体发酵、半固体发酵和固体发酵。但因液态发酵植酸酶生产成本比较高,投产不易。所以我国多采用固态发酵方法。韩建春等用紫
17、外线和EB的复合诱变方法获得植酸酶高产菌AS3.430912作为发酵菌株,并以玉米面和麸皮作为培养基,摸索出了固态发酵生产植酸酶的最佳工艺条件为:发酵温度30,玉米面和麸皮比例4:6,最初pH5,培养基水分51.3,液体种子接种量5,发酵时间108 h。张继英以MR020为试验菌株,研究了产植酸酶活力较高的固体培养基配方,最佳条件为:以麸皮为基本培养基,添5%的蛋白胨,0.2%NH4Cl、0.01% FeS04、0.07%MgS04 组成的培养基在相同条件下产酶活力较高,该菌种在此培养基上培养4.5d (108 h)时达到产酶高峰。华南热带农业大学的科研人员通过研究,掌握了以木薯为原料固态发酵
18、生产植酸酶的最佳发酵条件、产品的使用及保存性能、植酸酶的最适作用条件等,为植酸酶的工业化生产及应用提供了科学的依据。1.4 植酸酶的基本酶学性质植酸酶它广泛存在于微生物和植物中,是一种糖蛋白,因有不同来源,它们的糖基化程度、最适pH 值、等电点、氨基酸组成、Km 值、分子量、热稳定性、底物专一性等有一定差异。1.5 植酸酶的作用机理 植酸酶能够将肌醇六磷酸(植酸)分解成为磷酸和肌醇。它将逐个切下植酸分子上的磷酸基团,水解成中间产物IP5,IP4,IP3,IP,最终产物为磷酸和肌醇6。因为植酸酶来源不同所以其作用机理不同。微生物的植酸酶水解植酸时,首先从植酸的第3碳位点开始水解植酸酯键而释放无机
19、磷,其它碳位点的磷依次被释放,整个植酸分子最终酯解,3-植酸酶需要Mg2+参加催化过程。植物来源的6-植酸酶,它首先从第6位碳位点开始催化植酸水解为无机磷。1g植酸完全分解理论上可释放出磷2816mg。植酸酶只能将植酸分解为肌醇磷酸酯,而不能完全分解成磷酸和肌醇,在酸性磷酸酶的帮助下可以将肌醇磷酸酯彻底分解,二磷酸酯、单磷酸酯在酸性磷酸酶的分解下可以彻底分解成磷酸和肌醇。1.6 植酸酶的应用意义1.6.1 减少磷排放,保护生态环境单胃动物的消化系统缺乏或更少的植酸酶,无法有效地利用植酸而导致动物粪便排放大量的植酸,大量的水和土壤中的微生物分解植酸在水中释放的无机磷,以及在日粮中大量的无机磷的添
20、加,水中磷超负荷。磷是水生植物生长的最重要因素的限制营养。入水中大量的磷刺激藻类和其他地表水植物的生长,随后,大量的水生植物坏死,导致淡水水质恶化,水中的氧气含量低,危及鱼类的生存和其他野生动物,从而破坏了生态环境,特别是养殖区密集的地方磷污染的更为突出。植酸酶可以有效地防止水的磷污染。植酸酶有助于降低单胃动物饲料中的植酸分解,释放无机磷,以充分满足动物生长需要磷,饲料加工,没有必要添加无机磷,从而大大减少磷排放入水中,以防止磷污染,保护生态环境。例如,植酸酶混合鸡饮食,小鸡增长超过60的植酸磷的吸收和利用,其排放量减少约50;植酸酶喂养鱼,猪和其他测试也取得了相同的结果。据在美国的调查显示:
21、美国单胃动物饲料中所有的植酸酶,美国全年减少8.23107公斤的磷进入生态环境,不仅有效地保护生态环境,唯一的植酸从饲料中无机磷值168万美元释放植酸的酶降解。中国是一个人口大国,水产养殖发展的重大植酸酶的合理应用。1.6.2 减轻江河、水域等环境污染。中国的河流,水体污染十分严重,关键是污染水体中氮和磷超过每年多达250万t从动物粪便中磷的排放,是在水体富营养化的罪魁祸首之一。大量的实验研究表明,植酸酶补充饮食可以使粪磷排泄量下降50左右,但通过外源磷的添加或提高饲料转化率只能使磷的排泄量减少10,吴东 等采用AA肉雏鸡分5 个处理进行试验证明,在水平一致总磷、有效磷的情况下,随着日粮中植酸
22、磷水平的递增, 而磷的排泄量递减,我国每年的磷排放量因此可以减少约180万吨,将大大缓解磷污染水体1.6.3 消除植酸的螯合作用,提高食物的营养价值人类和动物所需的营养成分可分为有机养分和无机养分。后者少,只占4至5的体重,但种类很多, 功能各不相同,且都具有非常重要的生理功能。如骨形成,维持体液,酶和辅酶的活性,都不能离开无机盐,如缺铁易患贫血,缺钙易患骨质疏松症,消除植酸其螯合作用,食物还有丰富的无机盐,其螯合作用将大大减少二价和三价阳离子和蛋白质的生物利用度。加植酸酶,可以消除此其螯合作用,从而提高无机营养盐的生物利用度。 2单独使用或与木聚糖酶和葡聚糖酶的组合,可以提高小麦的营养价值。
23、牛饲料中添加有植酸酶,可减少乳牛胃内胺基氮,从而增加了挥发性脂肪酸,牛奶产量和质量提高很多。1.6.4 提高蛋白质、氨基酸的利用率酸与某些蛋白质相结合,阻碍蛋白质水解,植酸与蛋白质结合与pH值有很大的关系。当pH值低于蛋白质等电点,植酸的磷酸基团和蛋白质的阳离子基团结合,形成二元蛋白- 植酸复合物,可溶但只有当pH值低于3.5。这些化合物可影响酶的活性,蛋白质溶解度和蛋白质的消化率。体外研究表明,多种因素影响植酸与蛋白质结合的程度,包括pH值,蛋白质溶解度及来源和钙的水平和饮食中的镁。植酸对蛋白质的抑制作用,可能是因为蛋白质- 植酸非特定性Ca2+螯合作用,从而影响胰岛素和-淀粉酶活性,对蛋白
24、酶活性的影响也降低了蛋白质的吸收率的原因。植酸酶水解,释放蛋白复合物,使消化利用率提高。添加微生物植酸酶到饲料后,不仅使蛋白质和缬氨酸,赖氨酸,苏氨酸,色氨酸,精氨酸,组氨酸,苯丙氨酸,蛋氨酸,异亮氨酸和亮氨酸表观消化率分别增加9至128。1.6.5 提高矿物元素的利用率植酸酶在饲料和食品中的存在是不利于吸收和利用其中的矿物质元素的,包括锌,钙,镁,锰,铜等。植酸与下列离子形成复合物的稳定性依次减弱:Zn2+的,Cu2+,Ni2+,CO2+,Mn2+,Ca2+。因此,植酸,影响最大的是锌矿物元素的利用率。植酸的存在可降低主食植物性食物的人群对Zn2+的吸收和稳态,可导致侏儒症和性腺功能低下症。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 酵母 植酸酶 相关 毕业论文
链接地址:https://www.31ppt.com/p-2316059.html