北师大版八年级数学下册 全册单元复习总结课件.ppt
《北师大版八年级数学下册 全册单元复习总结课件.ppt》由会员分享,可在线阅读,更多相关《北师大版八年级数学下册 全册单元复习总结课件.ppt(151页珍藏版)》请在三一办公上搜索。
1、,要点梳理,考点讲练,课堂小结,课后作业,小结与复习,第一章 三角形的证明,北师大版八年级下册单元复习课件,(4)_、底边上的中线和底边上的高互相重合,简称“三线合一”.,顶角平分线,(3)两个_相等,简称“等边对等角”;,底角,(2)轴对称图形,等腰三角形的顶角平分线所在的直线是它的对称轴;,一、等腰三角形的性质及判定,1.性质,(1)两腰相等;,要点梳理,2.判定,(1)有两边相等的三角形是等腰三角形;,(2)如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简写成“_”).,等角对等边,二、等边三角形的性质及判定,1.性质,等边三角形的三边都相等;,等边三角形的三个内角都相等,并
2、且每一个角都等于_;,是轴对称图形,对称轴是三条高所在的直线;,任意角平分线、角对边上的中线、对边上的高互相重合,简称“三线合一”.,60,2.判定,三条边都相等的三角形是等边三角形.,三个角都相等的三角形是等边三角形.,有一个角是60的_是等边三角形.,等腰三角形,(5)在直角三角形中,30的角所对的直角边等于斜边的一半.,直角三角形的性质定理1,直角三角形的两个锐角_.,互余,直角三角形的判定定理1,有两个角_的三角形是直角三角形.,互余,三、直角三角形,勾股定理表达式的常见变形:a2c2b2,b2c2a2,.勾股定理分类计算:如果已知直角三角形的两边是a,b(且ab),那么,当第三边c是
3、斜边时,c_;当a是斜边时,第三边c_.,四、勾股定理 勾股定理:直角三角形两条直角边的平方和等于斜边的.即:对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有.,平方,注意 只有在直角三角形里才可以用勾股定理,运用时要分清直角边和斜边,a2b2c2,五、勾股定理的逆定理 如果三角形的三边长a、b、c有关系:a2b2,那么这个三角形是直角三角形利用此定理判定直角三角形的一般步骤:,(1)确定最大边;(2)算出最大边的平方与另两边的;(3)比较最大边的平方与另两边的平方和是否相等,若相等,则说明这个三角形是 三角形到目前为止判定直角三角形的方法有:(1)说明三角形中有一个
4、角是;(2)说明三角形中有两边互相;(3)用勾股定理的逆定理,平方和,直角,直角,垂直,注意 运用勾股定理的逆定理时,要防止出现一开始就写出a2b2c2之类的错误,c2,1互逆命题在两个命题中,如果第一个命题的条件是第二个命题的,而第一个命题的结论是第二个命题的,那么这两个命题叫做互逆命题2逆命题每一个命题都有逆命题,只要将原命题的条件改成,并将结论改成,便可以得到原命题的逆命题,结论,条件,结论,条件,六、逆命题和互逆命题,3逆定理如果一个定理的逆命题经过证明是真命题,那么,它也是一个定理,这两个定理叫做互逆定理,其中一个叫做另一个的 定理注意 每个命题都有逆命题,但一个定理不一定有逆定理如
5、“对顶角相等”就没有逆定理,逆,1.线段垂直平分线的性质定理:线段中垂线上的点到线段两端点的距离相等.,2.逆定理:到线段两端点的距离相等的点在线段的垂直平分线上.,七、线段的垂直平分线,3常见的基本作图(1)过已知点作已知直线的;(2)作已知线段的垂直 线,垂线,平分,4.三角形的三边的垂直平分线的性质:三角形的三边的垂直平分线相交于一点,且到三个顶点的距离相等.,1.性质定理:角平分线上的点到角两边的距离相等.2.判定定理:在一个角的内部,到角两边距离相等的点在角的平分线.3.三角形的三条内角平分线的性质:三角形的三条内角平分线相交于一点,且到三边的距离相等.,八、角平分线的性质与判定,例
6、1 如图所示,在ABC中,AB=AC,BDAC于D.求证:BAC=2DBC.,【分析】根据等腰三角形“三线合一”的性质,可作顶角BAC的平分线,来获取角的数量关系.,考点讲练,证明:作BAC的平分线AE,交BC于点E,如图所示,则,AB=AC,AEBC.,2+ACB=90.,BDAC,DBC+ACB=90.,2=DBC.,BAC=2DBC.,等腰三角形的性质与判定是本章的重点之一,它们是证明线段相等和角相等的重要依据,等腰三角形的特殊情形等边三角形的性质与判定应用也很广泛,有一个角是30的直角三角形的性质是证明线段之间的倍份关系的重要手段.,1.如图,在ABC中,AB=AC时,(1)ADBC,
7、_=_;_=_.(2)AD是中线,_;_=_.(3)AD是角平分线,_ _;_=_.,BAD,CAD,BD,CD,AD,BC,BAD,CAD,AD,BC,BD,CD,例2 在ABC中,已知BD是高,B90,A、B、C的对边分别是a、b、c,且a3,b4,求BD的长,解:B90,b是斜边,则在RtABC中,由勾股定理,得又SABC bBD ac,,在直角三角形中,已知两边的长求斜边上的高时,先用勾股定理求出第三边,然后用面积求斜边上的高较为简便在用勾股定理时,一定要清楚直角所对的边才是斜边,如在本例中不要受勾股数3,4,5的干扰,2已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A
8、.25 B.14 C.7 D.7或25,D,例3 已知在ABC中,A,B,C的对边分别是a,b,c,an21,b2n,cn21(n1),判断ABC是否为直角三角形,解:由于a2b2(n21)2(2n)2n42n21,c2(n21)2 n42n21,从而a2b2c2,故可以判定ABC是直角三角形,运用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:先判断哪条边最大;分别用代数方法计算出a2b2和c2的值(c边最大);判断a2b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形,3.已知下列图形中的三角形的顶点都在正方形的格点 上,可以判定三角形是直角三角形的有_,(2
9、)(4),例4 判断下列命题的真假,写出这些命题的逆命题并判断它们的真假(1)如果a0,那么ab0;(2)如果点P到线段AB两端点的距离相等,那么P在线段AB的垂直平分线上,解:(1)原命题是真命题原命题的逆命题是:如果ab0,那么a0.逆命题为假(2)原命题是真命题原命题的逆命题是:如果P在线段AB的垂直平分线上,那么点P到线段AB两端点的距离相等其逆命题也是真命题,4.写出下列命题的逆命题,并判断其真假:(1)若x=1,则x2=1;(2)若|a|=|b|,则a=b.,解:(1)逆命题:若x2=1,则x=1是假命题.(2)逆命题:若a=b,则|a|=|b|是真命题.,解:AD 是BC 的垂直
10、平分线,AB=AC,BD=CD.点C 在AE 的垂直平分线上,AC=CE,AB=AC=CE,AB+BD=DE.,例5 如图,AD是BC的垂直平分线,点C 在AE 的垂直平分线上,AB,AC,CE 的长度有什么关系?AB+BD与DE 有什么关系?,5.如图,在ABC中,DE是AC的垂直平分线,AC=5厘米,ABD的周长等于13厘米,则ABC的周长是.,A,B,D,E,C,18厘米,常常运用线段的垂直平分线的性质“线段垂直平分线上的点到线段两端的距离相等”进行线段之间的转换来求线段之间的关系及周长的和差等,有时候与等腰三角形的“三线合一”结合起来考查.,6.下列说法:若点P、E是线段AB的垂直平分
11、线上两点,则EAEB,PAPB;若PAPB,EAEB,则直线PE垂直平分线段AB;若PAPB,则点P必是线段AB的垂直平分线上的点;若EAEB,则经过点E的直线垂直平分线段AB其中正确的有(填序号).,例6 如图,在ABC中,AD是角平分线,且BD=CD,DEAB,DFAC.垂足分别为E,F.求证:EB=FC.,【分析】先利用角平分线的性质定理得到DE=DF,再利用“HL”证明RtBDE RtCDF.,证明:AD是BAC的角平分线,DEAB,DFAC,,DE=DF,DEB=DFC=90.,在RtBDE 和 RtCDF中,,RtBDE RtCDF(HL).,EB=FC.,8.ABC中,C=90,
12、AD平分CAB,且BC=8,BD=5,则点D到AB的距离是.,3,E,7.如图,DEAB,DFBG,垂足分别是E,F,DE=DF,EDB=60,则 EBF=度,BE=.,60,BF,9.如图所示,已知ABC中,PEAB交BC于点E,PFAC交BC于点F,点P是AD上一点,且点D到PE的距离与到PF的距离相等,判断AD是否平分BAC,并说明理由,解:AD平分BAC理由如下:D到PE的距离与到PF的距离相等,点D在EPF的平分线上12又PEAB,13同理,2434,AD平分BAC,P,例7 等腰三角形的周长为20cm,其中两边的差为8cm,求这个等腰三角形各边的长.,【分析】要考虑腰比底边长和腰比
13、底边短两种情况.,解:若腰比底边长,设腰长为xcm,则底边长为(x-8)cm,根据题意得 2x+x-8=20,解得 x=,x-8=;若腰比底边短,设腰长为ycm,则底边长为(y+8)cm,根据题意得2y+y+8=20,解得y=4,y+8=12,但4+4=812,不符合题意.故此等腰三角形的三边长分别为,分类讨论思想,10.等腰三角形的两边长分别为4和6,求它的周长.,解:若腰长为6,则底边长为4,周长为6+6+4=16;若腰长为4,则底边长为6,周长为4+4+6=14.故这个三角形的周长为14或16.,例8 如图,有一张直角三角形纸片,两直角边AC6 cm,BC8 cm,将ABC折叠,使点B与
14、点A重合,折痕是DE,求CD的长,【分析】欲求的线段CD在RtACD中,但此三角形只知一边,可设法找出另两边的关系,然后用勾股定理求解,方程思想,解:由折叠知:DADB,ACD为直角三角形 在RtACD中,AC2CD2AD2,设CDx cm,则ADBD(8x)cm,代入式,得62x2(8x)2,化简,得366416x,所以x 1.75,即CD的长为1.75 cm.,勾股定理可以直接解决直角三角形中已知两边求第三边的问题;如果只知一边和另两边的关系时,也可用勾股定理求出未知边,这时往往要列出方程求解,11.如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将DAE沿DE折 叠,使点
15、A落在对角线BD上的点A 处,则AE的长为.,课堂小结,三角形的证明,等腰三角形,等腰三角形的性质,等腰三角形的判定,勾股定理,等边三角形的性质,等边三角形的判定,直角三角形,直角三角形的性质,两个直角三角形全等的判定(HL),直角三角形的判定,等边三角形,勾股定理的逆定理,垂直平分线的性质,角平分线的性质,第二章 一元一次不等式与 一元一次不等式组,小结与复习,要点梳理,考点讲练,课堂小结,课后作业,要点梳理,一、不等式的有关概念,二、不等式的基本性质,1.性质1:如果ab,那么 a+c,且 a-c.,b+c,b-c,2.性质2:如果a b,c 0,那么 ac bc,.,3.性质3:如果a
16、b,c 0,那么 ac bc,.,4.不等式还具有传递性:如果a b,b c,那么a c.,不等号,一元一次不等式,一元一次不等式组,不等式的解集,不等式组的解集,不等式,解一元一次不等式和解一元一次方程类似,有 等步骤.,三、解一元一次不等式,去分母,去括号,移项,合并同类项,系数化为一,求ax+b0(或0)(a,b是常数,a0)的解集,函数y=ax+b的函数值大于0(或小于0)时x的取值范围,直线y=ax+b在x轴上方或下方时自变量的取值范围,从数的角度看,从形的角度看,求ax+b0(或0)(a,b是常数,a0)的解集,四、一元一次不等式与一次函数的关系,五、解一元一次不等式组,1.分别求
17、出不等式组中各个不等式的解集;2.利用数轴求出这些不等式的解集的公共部分.,同大取大,同小取小,大小小大中间找,大大小小无处找,xb,xa,axb,无解,六、用数轴表示一元一次不等式(组)的解集(ab),七、利用一元一次不等式(组)解决实际问题,1.根据题意,适当设出未知数,2.找出题中能概括数量间关系的不等关系,3.用未知数表示不等关系中的数量,4.列出不等式(组)并求出其解集,5.检验并根据实际问题的要求写出符合题意的解或解集,并写出答案,考点讲练,例1 下列命题正确的是()A.若ab,bc B.若ab,则acbcC.若ab,则ac2bc2 D.若ac2bc2,则ab,D,【解析】选项A,
18、由ab,bc;选项B,ab,当c=0时,ac=bc,不能根据不等式的性质确定acbc;选项C,ab,当c=0时,ac2=bc2,不能根据不等式的性质确定ac2bc2;选项D,ac2bc2,隐含c0,可以根据不等式的性质在不等式的两边同时除以正数c2,从而确定ab.,1.已知ab,则下列各式不成立的是()A.3a3b B.-3a-3b C.a-3b-3 D.3+a3+b,B,2.已知关于x的不等式(1-a)x2的解集为 则a的取值范围是()A.a0 B.a1 C.a0 D.a1,B,例2 解不等式:.并把解集表示在数轴上.,解:去分母,得 2(2x-1)-(9x+2)6,,去括号,得 4x-2-
19、9x-26,,移项,得 4x-9x6+2+2,,合并同类项,得-5x10,,系数化1,得 x-2.,不等式的解集在数轴上表示如图所示.,3.不等式2x-16的正整数解是.,1,2,3,4.已知关于x的方程2x+4=m-x的解为负数,则m的取值范围是.,m4,先求出不等式的解集,然后根据“大于向右画,小于向左画,含等号用实心圆点,不含等号用空心圆圈”的原则在数轴上表示解集.,例3 如图是一次函数y=kx+b的图象,当y2时,x的取值范围是(),考点三 一元一次不等式与一次函数关系,Ax1 Bx1 Cx3 Dx3,【解析】一次函数y=kx+b经过点(3,2),且函数值y随x的增大而增大,当y2时,
20、x的取值范围是x3,C,5.某单位准备和一个体车主或一国营出租车公司中的一家签订月租车合同,设汽车每月行驶x 千米,个体车主收费y1元,国营出租车公司收费为y2元,观察下列图象可知,当x_时,选用个体车较合算,1500,6.已知直线y=2xb经过点(2,2),求关于x的不等式2xb0的解集.,解:把点(2,2)代入直线y=2xb,得2=4b,解得 b=6.故直线表达式为y=2x6,解得x3.,解:解不等式,得 x3,解不等式,得,所以这个不等式组的解集是 解集在数轴上表示如下:,通过观察数轴可知该不等式组的整数解为2,3.,7.使不等式x-12与3x-78同时成立的x的整数值是.,3,4,解一
21、元一次不等式组,在找“公共部分”的过程中,可借助数轴或口诀确定不等式组的解集.,8.若关于x不等式组 有解,则m的取值范围为()A.m B.m C.m D.m,C,例4 某小区计划购进甲、乙两种树苗,已知甲、乙两种树苗每株分别为8元、6元.若购买甲、乙两种树苗共360株,并且甲树苗的数量不少于乙树苗的一半,请你设计一种费用最少的购买方案.,解:设购买甲树苗的数量为x株,依题意得,解得 x120.,购买甲树苗120株,乙树苗240株,此时费用最省.,甲树苗比乙树苗每株多2元,要节省费用,则要尽量少买甲树苗.,又x最小为120,,解不等式的应用问题的步骤包括审、设、列、解、找、答这几个环节,而在这
22、些步骤中,最重要的是利用题中的已知条件,列出不等式(组),然后通过解出不等式(组)确定未知数的范围,利用未知数的特征(如整数问题),依据条件,找出对应的未知数的确定数值,以实现确定方案的解答.,一元一次不等式(组),不等式,不等式的解集,一元一次不等式,一元一次不等式组,解集,数轴表示,不等式的基本性质,解 集,数轴表示,课堂小结,解法,解法,实际应用,与一次函数关系,要点梳理,考点讲练,课堂小结,课后作业,小结与复习,第三章 图形的平移与旋转,一、平移的特征1对应线段;对应角;图形的形状和大小都不发生改变2对应点所连的线段平行且相等,平行且相等,相等,要点梳理,(1)原图形向左(右)平移a个
23、单位长度:(a0),(2)原图形向上(下)平移b个单位长度:(b0),原图形上的点P(x,y),原图形上的点P(x,y),P1(x+a,y),P2(x-a,y),原图形上的点P(x,y),原图形上的点(x,y),P3(x,y+b),P4(x,y-b),二、图形在坐标系中的平移,在平面直角坐标系中内,一个图形怎么移动,那么这个图形上各个点就怎么移动.,三、旋转的特征1旋转过程中,图形上_ 按 旋转 2任意一对对应点与旋转中心的连线所成的角都是_,对应点到旋转中心的距离都_3旋转前后对应线段、对应角分别_,图形的大小、形状_,每一点都绕旋转中心,同一旋转方向,同样大小的角度,旋转角,相等,相等,不
24、变,1中心对称把一个图形绕着某一个点旋转_,如果它能与另一个图形重合,那么就说这两个图形成中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点,180,四、中心对称,2中心对称的特征中心对称的特征:在成中心对称的两个图形中,对应点所连线段都经过,并且被对称中心_3.中心对称图形把一个图形绕某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,对称中心,平分,例1 如图所示,下列四组图形中,有一组中的两个图形经过平移其中一个能得到另一个,这组图形是(),D,A B C D,【解析】紧扣平移的概念解题.,考点讲练,平移前后的图
25、形形状和大小完全相同,任何一对对应点连线段平行(或共线)且相等.,1.如图所示,DEF经过平移得到ABC,那么C的对应角和ED的对应边分别是(),A.F,AC,B.BOD,BA,C.F,BA,D.BOD,AC,C,例2 如图,直角坐标系中,ABC的顶点都在网格点上,其 中,C点坐标为(1,2)(1)写出点A、B的坐标:A(,)、B(,);(2)将ABC先向左平移2个单位长度,再向上平移1个单位 长度,得到ABC,请画出相应图形,则 ABC的三个顶点 坐标分别是 A(,)、B(,)、C(,);(3)求ABC的面积,2,-1,4,3,0,0,2,4,-1,3,【分析】(1)根据图形写出相应点的坐标
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大版八年级数学下册 全册单元复习总结课件 北师大 八年 级数 下册 单元 复习 总结 课件
链接地址:https://www.31ppt.com/p-2315344.html