【精品课件】材料力学 第八章应力应变状态分析北航精品课件.ppt
《【精品课件】材料力学 第八章应力应变状态分析北航精品课件.ppt》由会员分享,可在线阅读,更多相关《【精品课件】材料力学 第八章应力应变状态分析北航精品课件.ppt(86页珍藏版)》请在三一办公上搜索。
1、材料力学(I II)北航 精品课件,北京航空航天大学单辉祖教授编著的材料力学(I)、材料力学()是教育部“高等教育面向21世纪教学内容和课程体系改革计划”的研究成果,是面向21世纪课程教材和教育部工科力学“九五”规划教材,也是普通高等教育“九五”国家级重点教材。该教材1999年初版,获2000年度中国高校科学技术奖(教材类)二等奖,教学改革成果获2001年度国家级教学成果二等奖、北京市教学成果一等奖;2004年修订出版第2版,修订版已列入“普通高等学校十五国家教材规划”、高教社“高等教育百门精品教材”。以材料力学I、II为主教材的材料力学立体化教学包已作为高等教育出版社的“名品”向全国推广。,
2、本教材在妥善处理传统内容的继承和现代科技成果的引进以及知识的传授和能力、素质的培养方面,进行了积极探索,是一套面向21世纪的具有新内容、新体系,论述严谨,重视基础与工程应用(包括计算机的应用),重视能力培养的新教材。教材体现了模块式的特点,通过对模块的选择与组合,可同时满足不同层次工科院校的不同专业对基础力学课程的教学要求。,Page,3,8-1 引言,8-2 平面应力状态应力分析,8-4 平面应力状态的极值应力与主应力,第八章 应力应变状态分析,8-5 复杂应力状态的最大应力,8-7 各向同性材料的应力、应变关系,8-3 应力圆,8-6 平面应变状态应变分析,8-8 复合材料的应力、应变关系
3、,8-9 复杂应力状态下的应变能与畸变能,Page,4,低碳钢和铸铁的拉伸实验,8-1 引言,铸铁断口与轴线垂直,低碳钢断口有何不同,为什么?,二者都容易由实验建立强度条件。,Page,5,低碳钢和铸铁的扭转实验,容易由实验建立强度条件。,与拉伸断口有何不同,为什么?拉伸与扭转强度条件是否有关联?,Page,6,螺旋桨轴:,采用拉伸强度条件、扭转强度条件,还是其它强度条件?,Page,7,工字梁:,复杂应力状态下,如何建立强度条件?,分别满足?,做实验的工作量与难度?,Page,8,通过构件内一点,所作各微截面的应力状况,称为该点处的应力状态,应力状态,应变状态,构件内一点在各个不同方位的应变
4、状况,称为该点处的应变状态,建立复杂应力状态强度条件的研究思路:,材料物质点应力状况应力微体,材料失效机理,强度条件,Page,9,8-2 平面应力状态应力分析,微体仅有四个面作用有应力;,应力作用线均平行于不受力表面;,什么是平面应力状态?,问题:已知x,y,x,y,求任意平行于z轴的斜截面上的应力。,平面应力状态的应力分析,微体有一对平行表面不受力的应力状态。,由此推断,Page,10,应力分析的解析法:微体中取分离体平衡。,符号规定:拉伸为正;使微体顺时针转者为正 以x轴为始边,指向沿逆时针转者为正,Page,11,上述关系式是建立在静力学基础上,与材料性质无关。换句话说,它既适用于各向
5、同性与线弹性情况,也适用于各向异性、非线弹性与非弹性问题。,应力转轴公式的适用范围?,应力转轴公式(斜截面上的应力公式),Page,12,解:,问 可取何值,(x轴向左),例 求图示,,已知,Page,13,一、应力圆,8-3 应力圆,应力圆,Page,14,坐标系下的圆方程,圆心坐标:,半径:,结论:平面应力状态下各方向的应力轨迹为一个圆 应力圆,Page,15,二、应力圆的绘制及应用,绘制方法1:,为半径作圆,缺点:,需用解析法计算圆心坐标和半径,没有反映应力圆上的点与微体截面方位的对应关系,Page,16,绘制方法2(实际采用),分析,设x面和y面的应力分别为,Page,17,同理:,绘
6、图:以ED为直径,C为圆心作圆,面应力:,考察H点应力,Page,18,点面对应:微体截面上的应力值与应力圆上点的坐标值一一对应。,应力圆点与微体截面应力对应关系,Page,19,二倍角对应:应力圆半径转过的角度是微体截面方位角变化的两倍,且二者转向相同。,微体互垂截面,对应应力圆同一直径两端 微体平行对边,对应应力圆同一点,Page,20,几种简单受力状态的应力圆,Page,21,绘制应力圆两例,Page,22,8-4 平面应力状态的极值应力与主应力,一、平面应力状态的极值应力,思考:如何从应力圆确定微体内最大与最小正应力?最大与最小切应力?微体内最大正应力与切应力方位?,Page,23,8
7、-4 平面应力状态的极值应力与主应力,一、平面应力状态的极值应力,Page,24,思考:,对于平面应力:是否一定存在正应力为零的面?,切应力最大与最小的面,正应力有什么性质?,是否一定存在切应力为零的面?,正应力最大与最小的面,切应力有什么性质?,Page,25,二、主应力,主平面切应力为零的截面,主应力主平面上的正应力,主应力符号与规定,主平面微体相邻主平面相互垂直,构成一正六面形微体,(按代数值排列),Page,26,应力状态分类:,单向应力状态:仅一个主应力不为零的应力状态,二向应力状态:两个主应力不为零的应力状态,三向应力状态:三个主应力均不为零的应力状态,复杂应力状态:二向与三向应力
8、状态,三、纯剪切状态的最大应力,Page,27,圆轴扭转时滑移与剪断发生在tmax的作用面:,圆轴扭转时断裂发生在smax 的作用面:,例:纯剪应力状态下不同的断裂机理:,Page,28,解:1.解析法,Page,29,例 试用解析法与图解法确定主应力的大小和方向,1.解析法(续),问题:哪一个解是正确的?,根据对应切应力所指方向可判断 的方向,又解:,试比较两个求 的公式,Page,30,(2)量A、B两点坐标,BD的方位角得,2.图解法,Page,31,作业8-18-2c8-4b,c8-5请用坐标纸作图,Page,32,上一讲回顾,应力圆的画法:确定x面和y面的应力坐标点D、E 以DE为直
9、径作应力圆。,应力圆点与微体面对应关系,极值应力,Page,33,思考题:试分析下列平面应力杆件中A,B两点的应力,A点零应力状态,应力圆为位于圆点的点圆,B点应力集中,Page,34,85 三向应力状态的最大应力,一.三向应力圆,(1)三组特殊的平面应力对应于三个应力圆:平行 平面,由,作应力圆;由,和,分别作应力圆,(2)三向应力圆,Page,35,结论:任意斜截面的应力值位于三向应力圆的阴影区内,(3)任意斜截面的应力与三向应力圆对应关系,Page,36,二.最大与最小应力,位于与 和 均成 的截面,Page,37,例 图示单元体最大切应力 作用面是图_,答:,Page,38,例 试作图
10、示平面应力状态微体的三向应力圆,单位:MPa,Page,39,作三向应力圆,例 试作图a所示微体三向应力圆,计算微体的,解:作图b所示平面应力微体的应力圆,主应力与第一主应力方位。,分析:垂直于z轴的平面是一个主平面,Page,40,3)计算微体的 和主应力,i)图解法 由图量得(单位:MPa),思考:三向应力圆的三个圆分别代表分别代表微体那组特殊平面的应力?,极值应力 对应于微体哪个方位?在哪个圆上量取?,Page,41,ii)解析法,思考:下述计算是否正确?,左面计算的是平行于z轴截面的极值应力,不是微体最大最小应力。,3)计算微体的 和主应力,Page,42,ii)解析法(单位:MPa)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品课件 【精品课件】材料力学 第八章 应力应变状态分析 北航精品课件 精品 课件 材料力学 第八 应力 应变 状态 分析 北航
链接地址:https://www.31ppt.com/p-2280421.html