光纤通信ppt课件第七章.ppt
《光纤通信ppt课件第七章.ppt》由会员分享,可在线阅读,更多相关《光纤通信ppt课件第七章.ppt(179页珍藏版)》请在三一办公上搜索。
1、7.1 光放大器7.2 光波分复用技术7.3 光交换技术7.4 光孤子通信7.5 相干光通信技术7.6 光时分复用技术7.7 波长变换技术,第 7 章 光纤通信新技术,返回主目录,第 7 章 光纤通信新技术 光纤通信发展的目标是提高通信能力和通信质量,降低价格,满足社会需要。进入20世纪90年代以后,光纤通信成为一个发展迅速、技术更新快、新技术不断涌现的领域。本章主要介绍一些已经实用化或者有重要应用前景的新技术,如光放大技术,光波分复用技术,光交换技术,光孤子通信,相干光通信,光时分复用技术和波长变换技术等。,7.2 光波分复用技术,随着人类社会信息时代的到来,对通信的需求呈现加速增长的趋势。
2、发展迅速的各种新型业务(特别是高速数据和视频业务)对通信网的带宽(或容量)提出了更高的要求。为了适应通信网传输容量的不断增长和满足网络交互性、灵活性的要求,产生了各种复用技术。,扩容的选择,空分复用 SDM(Space Division Multiplexer)时分复用 TDM(Time Division Multiplexer)波分复用 WDM(Wavelength Division Multiplexer)TDM和WDM技术合用,空分复用(SDM)Space Division Multiplexer,空分复用(SDM)即多对电线或光纤共用一条缆的复用方式。比如5类线就是4对双绞线共用1条缆
3、。能够实现空分复用的前提条件是光纤或电线的直径很小,可以将多条光纤或多对电线做在一条缆内,既节省外护套的材料又便于使用。,光时分复用(OTDM)Optical Time Division Multiplexer,光时分复用(OTDM)是使用同一波长光载波的各路信号光占用不用时隙。,在光时分复用通信系统中,由于密集的时隙排列,发射光应是宽度为皮秒量级的窄脉冲。,光时分复用技术尚处于实验室研究阶段。目前利用光时分复用达到的最高传输速率为640Gb/s。,波分复用(WDM),波分复用(DWM):将各路信息分别加载在不同波长的光载波上并且在同一根光纤中传输,再借助光学方法在接收端将各路信息分解。,7.
4、2.1 光波分复用原理 1.WDM的概念 光波分复用(WDM)的基本原理是:在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将组合波长的光信号分开(解复用),并作进一步处理,恢复出原信号后送入不同的终端,因此将此项技术称为光波长分割复用,简称光波分复用技术。,光纤的带宽有多宽?如图7.6所示,在光纤的两个低损耗传输窗口:波长为1.31 m(1.251.35m)的窗口,相应的带宽(|f|=|-c/2|,和分别为中心波长和相应的波段宽度,c为真空中光速)为17700 GHz;波长为1.55 m(1.501.60 m)的窗口,相应的带宽为12500 G
5、Hz。两个窗口合在一起,总带宽超过30THz。,WDM和OFDM 光波分复用包括频分复用和波分复用,光频分复用(OFDM)技术和光波分复用(WDM)技术无明显区别,因为光波是电磁波的一部分,光的频率与波长具有单一对应关系。通常也可以这样理解,光频分复用指光频率的细分,光信道非常密集(如频率间隔10GHz)。光波分复用指光频率的粗分,光倍道相隔较远,甚至处于光纤不同窗口。由于目前一些光器件与技术还不十分成熟,因此要实现光信道十分密集的光频分复用(OFDM)还较为困难。,1310nm/1550nm窗口的波分复用 仍用于接入网,但很少用于长距离传输 1550nm窗口的密集波分复用(DWDM)在155
6、0 nm波长区段内,同时用8,16或更多个波长在一对光纤上(也可采用单光纤)构成的光通信系统,其中各个波长之间的间隔为1.6 nm、0.8 nm或更低,约对应于200 GHz,100 GHz或更窄的带宽。可广泛用于长距离传输,用于建设全光网络,WDM和DWDM,WDM技术对网络升级、发展宽带业务(如CATV,HDTV 和IP over WDM等)、充分挖掘光纤带宽潜力、实现超高速光纤通信等具有十分重要意义,尤其是WDM加上EDFA更是对现代信息网络具有强大的吸引力。目前,“掺铒光纤放大器(EDFA)+密集波分复用(WDM)+非零色散光纤(NZDSF,即G.655光纤)+光子集成(PIC)”正成
7、为国际上长途高速光纤通信线路的主要技术方向。,如果一个区域内所有的光纤传输链路都升级为WDM传输,我们就可以在这些WDM链路的交叉(结点)处设置以波长为单位对光信号进行交叉连接的光交叉连接设备(OXC),或进行光上下路的光分插复用器(OADM),则在原来由光纤链路组成的物理层上面就会形成一个新的光层。在这个光层中,相邻光纤链路中的波长通道可以连接起来,形成一个跨越多个OXC和OADM的光通路,完成端到端的信息传送,并且这种光通路可以根据需要灵活、动态地建立和释放,这就是目前引人注目的、新一代的WDM全光网络。,2.WDM系统的基本形式 光波分复用器和解复用器是WDM技术中的关键部件,将不同波长
8、的信号结合在一起经一根光纤输出的器件称为复用器(也叫合波器)。反之,经同一传输光纤送来的多波长信号分解为各个波长分别输出的器件称为解复用器(也叫分波器)。从原理上讲,这种器件是互易的(双向可逆),即只要将解复用器的输出端和输入端反过来使用,就是复用器。因此复用器和解复用器是相同的(除非有特殊的要求)。,WDM系统的基本构成主要有以下两种形式:双纤单向传输和单纤双向传输。(1)双纤单向传输。单向WDM传输是指所有光通路同时在一根光纤上沿同一方向传送。,(2)单纤双向传输。双向WDM传输是指光通路在一根光纤上同时向两个不同的方向传输。如图7.8所示,所用波长相互分开,以实现双向全双工的通信。,图7
9、.8 单纤双向WDM传输,双向WDM系统在设计和应用时必须要考虑几个关键的系统因素:如为了抑制多通道干扰(MPI),必须注意到光反射的影响、双向通路之间的隔离、串扰的类型和数值、两个方向传输的功率电平值和相互间的依赖性、光监控信道(OSC)传输和自动功率关断等问题,同时要使用双向光纤放大器。所以双向WDM系统的开发和应用相对说来要求较高,但与单向WDM系统相比,双向WDM系统可以减少使用光纤和线路放大器的数量。另外,通过在中间设置光分插复用器(OADM)或光交叉连接器(OXC),可使各波长光信号进行合流与分流,实现波长的上下路(Add/Drop)和路由分配,这样就可以根据光纤通信线路和光网的业
10、务量分布情况,合理地安排插入或分出信号。,插入损耗小 隔离度大 带内平坦,带外插入损耗变化陡峭 温度稳定性好 复用通路数多 尺寸小等,3.光波分复用器的性能参数 光波分复用器是波分复用系统的重要组成部分,为了确保波分复用系统的性能,对波分复用器的基本要求是:,(1)插入损耗 插入损耗是指由于增加光波分复用器/解复用器而产生的附加损耗,定义为该无源器件的输入和输出端口之间的光功率之比,即,其中Pi为发送进输入端口的光功率;Po为从输出端口接收到的光功率。,(dB)(7.1),(2)串扰抑制度 串扰是指其他信道的信号耦合进某一信道,并使该信道传输质量下降的影响程度,有时也可用隔离度来表示这一程度。
11、对于解复用器,其中Pi是波长为i的光信号的输入光功率,Pij是波长为i的光信号串入到波长为j信道的光功率。,(7.2),(7.3),其中Pj为发送进输入端口的光功率,Pr为从同一个输入端口接收到的返回光功率。,(3)回波损耗 回波损耗是指从无源器件的输入端口返回的光功率与输入光功率的比,即,(4)反射系数 反射系数是指在WDM器件的给定端口的反射光功率Pr与入射光功率Pj之比,即,(7.4),(5)工作波长范围 工作波长范围是指WDM器件能够按照规定的性能要求工作的波长范围(min到max)。(6)信道宽度 信道宽度是指各光源之间为避免串扰应具有的波长间隔。(7)偏振相关损耗 偏振相关损耗(P
12、DL:Polarizationdependent Loss)是指由于偏振态的变化所造成的插入损耗的最大变化值。,7.2.2 WDM系统的基本结构 实际的WDM系统主要由五部分组成:光发射机、光中继放大、光接收机、光监控信道和网络管理系统,如下图所示。,光发射机位于WDM系统的发送端。在发送端首先将来自终端设备(如SDH端机)输出的光信号,利用光转发器(OTU)把符合ITU-T G.957建议的非特定波长的光信号转换成符合ITU-T G.692建议的具有稳定的特定波长的光信号。OTU对输入端的信号波长没有特殊要求,可以兼容任意厂家的SDH信号,其输出端满足G.692的光接口,即标准的光波长和满足
13、长距离传输要求的光源;利用合波器合成多路光信号;通过光功率放大器(BA:Booster Amplifier)放大输出多路光信号。,用掺铒光纤放大器(EDFA)对光信号进行中继放大。在应用时可根据具体情况,将EDFA用作“线放(LA:Line Amplifier)”,“功放(BA)”和“前放(PA:Preamplifier)”。在WDM系统中,对EDFA必须采用增益平坦技术,使得EDFA对不同波长的光信号具有接近相同的放大增益。与此同时,还要考虑到不同数量的光信道同时工作的各种情况,保证光信道的增益竞争不影响传输性能。在接收端,光前置放大器(PA)放大经传输而衰减的主信道光信号,分波器从主信道光
14、信号中分出特定波长的光信号。接收机不但要满足一般接收机对光信号灵敏度、过载功率等参数的要求,还要能承受有一定光噪声的信号,要有足够的电带宽。,光监控信道(OSC:Optical Supervisory Channel)的主要功能是:监控系统内各信道的传输情况,在发送端,插入本结点产生的波长为s(1510 nm)的光监控信号,与主信道的光信号合波输出;在接收端,将接收到的光信号分离,输出s(1510 nm)波长的光监控信号和业务信道光信号。帧同步字节、公务字节和网管所用的开销字节等都是通过光监控信道来传送的。网络管理系统通过光监控信道物理层传送开销字节到其他结点或接收来自其他结点的开销字节对WD
15、M系统进行管理,实现配置管理、故障管理、性能管理和安全管理等功能,并与上层管理系统(如TMN)相连。,目前国际上已商用的系统有:42.5 Gb/s(10 Gb/s),82.5 Gb/s(20 Gb/s),162.5 Gb/s(40 Gb/s),402.5 Gb/s(100 Gb/s),3210 Gb/s(320 Gb/s),4010 Gb/s(400 Gb/s)。实验室已实现了8240 Gb/s(3.28 Tb/s)的速率,传输距离达3100 km=300 km。OFC2000(Optical Fiber Communication Conference)提供的情况有:Bell Labs:82
16、路40 Gb/s=3.28 Tb/s在3100 km=300 km的True Wave(商标)光纤(即G.655光纤)上,利用C和L两个波带联合传输;日本NEC:16020 Gb/s=3.2 Tb/s,利用归零信号沿色散平坦光纤,经过增益宽度为64 nm的光纤放大器,传输距离达1500 km;,日本富士通(Fujitsu):128路10.66 Gb/s,经过C和L波带注:C波带为15251565 nm,L波带为15701620 nm。,用分布喇曼放大(DRA:Distributed Raman Amplification),传输距离达6140 km=840 km;日本NTT:30路42.7 G
17、b/s,利用归零信号,经过增益宽度为50 nm的光纤放大器,传输距离达3125 km=375 km;美国Lucent Tech:100路10 Gb/s=1 Tb/s,各路波长的间隔缩小到25 GHz,利用L波带,沿NZDF光纤(G.655光纤)传输400 km;美国Mciworldcom和加拿大Nortel:100路10 Gb/s=1 Tb/s,沿NZDF光纤在C和L波带传输4段,约200 km;美国Qtera 和Qwest:两个波带4路10 Gb/s和2路10 Gb/s沿NZDF光纤传输23105 km=2415 km,这个试验虽然WDM路数不多,但在陆地光缆中却是最长距离。,7.2.3 W
18、DM技术的主要特点 1.充分利用光纤的巨大带宽资源 光纤具有巨大的带宽资源(低损耗波段),WDM技术使一根光纤的传输容量比单波长传输增加几倍至几十倍甚至几百倍,从而增加光纤的传输容量,降低成本,具有很大的应用价值和经济价值。2.同时传输多种不同类型的信号 由于WDM技术使用的各波长的信道相互独立,因而可以传输特性和速率完全不同的信号,完成各种电信业务信号的综合传输,如PDH信号和SDH信号,数字信号和模拟信号,多种业务(音频、视频、数据等)的混合传输等。,3.节省线路投资 采用WDM技术可使N个波长复用起来在单根光纤中传输,也可实现单根光纤双向传输,在长途大容量传输时可以节约大量光纤。另外,对
19、已建成的光纤通信系统扩容方便,只要原系统的功率余量较大,就可进一步增容而不必对原系统作大的改动。4.降低器件的超高速要求 随着传输速率的不断提高,许多光电器件的响应速度已明显不足,使用WDM技术可降低对一些器件在性能上的极高要求,同时又可实现大容量传输。,5.高度的组网灵活性、经济性和可靠性 WDM技术有很多应用形式,如长途干线网、广播分配网、多路多址局域网。可以利用WDM技术选择路由,实现网络交换和故障恢复,从而实现未来的透明、灵活、经济且具有高度生存性的光网络。,7.2.4 光滤波器与光波分复用器 在前面介绍耦合器时,已经简单地介绍了波分复用器(WDM)。在这一部分我们将介绍各种各样的波长
20、选择技术,即光滤波技术。光滤波器在WDM系统中是一种重要元器件,与波分复用有着密切关系,常常用来构成各种各样的波分复用器和解复用器。,Wavelengthfilter,Wavelengthmultiplexer,Wavelengthrouter,光滤波器的应用:,单纯的滤波应用,波分复用/解复用器中应用,波长路由器中应用,波分复用器和解复用器主要用在:WDM终端 波长路由器 波长分插复用器(Wavelength Add/Drop Multiplexer,WADM),波长路由器是波长选路网络(Wavelength Routing Network)中的关键部件,其功能可由图7.10(c)的例子说明
21、,它有两个输入端口和两个输出端口,每路输入都载有一组1,2,3和4 WDM信号。,如果用 来标记第i输入链路上的波长j,则路由器的输入端口1上的波长记为、,输入端口2上的波长记为、。,在输入端口1上的波长中,如果 和 由输出端口1输出,则 和 由输出端口2输出;在输入端口2上的波长中,如果 和 由输出端口2输出,则 和 由输出端口1输出,这样,我们就称路由器交换了波长1和4。,在本例中,波长路由器只有两个输入端口和两个输出端口,每一路上只有4个波长,但是在一般情况下,输入和输出的端口数是N(2),并且每一端口的波长数是W(2)(参看图7.33)。,如果一个波长路由器的路由方式不随时间变化,就称
22、为静态路由器;路由方式随时间变化,则称之为动态路由器。静态路由器可以用波分复用器来构成,如下图所示。,波长分插复用器可以看成是波长路由器的简化形式,它只有一个输入端口和一个输出端口,再加上一个用于分插波长的本地端口。对光滤波器的主要要求有:(1)一个好的光滤波器应有较低的插入损耗,并且损耗应该与输入光的偏振态无关。在大多数系统中,光的偏振态随机变化,如果滤波器的插入损耗与光的偏振有关(PDL:Polarization dependent Loss),则输出光功率将极其不稳定。,(2)一个滤波器的通带应该对温度的变化不敏感。温度系数是指温度每变化1的波长漂移。一个WDM系统要求在整个工作温度范围
23、(大约100)内,波长漂移应该远小于相邻信道的波长间隔。(3)在一个WDM系统中,随着级联的滤波器越来越多,系统的通带就变得越来越窄。为了确保在级联的末端还有一个相当宽的通带,单个滤波器的通带传输特性应该是平直的,以便能够容纳激光器波长的微小变化。,0/,0滤波器中心波长,信号波长.,图7.12 光滤波器的1 dB带宽,下面将介绍一些波长选择技术及其在WDM系统中的应用。1.光栅 光栅(Grating)广泛地用来将光分离为不同波长的单色光。在WDM系统中,光栅主要用在解复用器中,以分离出各个波长。图7.13是光栅的两个例子,图7.13(a)是透射光栅,图7.13(b)是反射光栅。,图7.13光
24、栅(a)透射光栅;(b)反射光栅,光栅平面,影像平面,l,2,l,1,q,d,1,q,d,2,q,i,l,1,l,2,光栅平面,影像平面,l,2,l,1,q,d,1,q,d,2,q,i,l,1,l,2,(a),(b),我们以透射光栅为例来说明光栅的基本原理。如图7.14所示,设两个相邻缝隙间的距离即栅距为a,光源离光栅平面足够远(相对于a而言),入射角为i,衍射角为d,通过两相邻缝隙对应光线的光程差由()决定,而,其中m为整数,当a和i一定时,不同的d对应不同的波长,也就是说,像面上的不同点对应不同的波长,于是可用作WDM中的解复用器。,2.布喇格光栅 布喇格光栅(Bragg Grating)
25、广泛用于光纤通信之中。一般情况下,传输媒质的周期性微扰可以看作是布喇格光栅;这种微扰通常引起媒质折射率周期性的变化。半导体激光器使用布喇格光波导作分布反馈可以获得单频输出(如DFB激光器);在光纤中,写入布喇格光栅后可以用于光滤波器、光分插复用器和色散补偿器。,设两列波沿着同一方向传播,其传播常数分别为0和1,如果满足布喇格相位匹配条件:,其中为光栅周期,则一个波的能量可以耦合到另一个波中去。在反射型滤波器中,我们假设传播常数为0的光波从左向右传播,如果满足条件:,(7.7),(7.8),则这个光波的能量可以耦合到沿它的反方向传播的具有相同波长的反射光中去。设0=2neff/0,其中0为输入光
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 光纤通信 ppt 课件 第七
链接地址:https://www.31ppt.com/p-2278137.html