《教学PPT数字滤波器的结构.ppt》由会员分享,可在线阅读,更多相关《教学PPT数字滤波器的结构.ppt(44页珍藏版)》请在三一办公上搜索。
1、在许多信息处理过程中,如对信号的过滤、检测、预测等,都要广泛地用到滤波器,数字滤波器是数字信号处理中使用最广泛的一种线性系统环节,它是数字信号处理的重要基础。在以下三章里,我们将用前面所学到基本方法来讨论数字滤波器,分析它的特点、结构、以及主要的设计方法。6.1 数字滤波器的结构特点与表示方法 数字滤波器的功能,本质上说是将一组输入的数字序列通过一定的运算后转变为另一组输出的数字序列,因此它本身就是一台完成给定运算的数字计算机。,第六章 数字滤波器的结构,数字滤波器一般可以用两种方法来实现:1.用数字硬件装配成一台专门的设备,成为数字信号处理机。2.直接利用通用计算机的软件来实现。例如,一个数
2、字滤波器,它的系统函数(也即滤波器的传递函数)如果为它所表达的运算可用差分方程来表示,同样这个运算也可以在通用计算机上实现。以一阶数字滤波器为例:只要按照图6-1的流程图编成程序,就可以让一台通用计算机来完成这个运算。,图6-1 流程图,一个数字网络可以用差分方程表示,也可以用单位脉冲响应表示,或者用系统函数来表示。对于研究这个系统的实现方法(即它的运算结构)来说,用方块结构图最直接。这种运算结构也可以用信号流图来表示。对于延时、乘以系数以及相加这三种基本运算来说,信号流图表示法如图6-3所示。,图6-4所示的一阶数字滤波器的结构可以用信号流图表达为一个6节点的简单图。节点上的信号值称为节点变
3、量或节点状态,图中所示的六个节点状态分别是:=可以看到,用信号流图表达数字网络的结构可以更简洁,我们在下面将普遍采用信号流图的办法来分析数字滤波器的结构。,图6-4一阶数字滤波器的信号流图表达,运算结构的不同将会影响系统的精度、误差、稳定性、经济性以及运算速度等许多重要的性能。对于无限长单位脉冲响应(IIR)滤波器与有限长单位脉冲响应(FIR)滤波器,它们在结构上各自有自己不同的特点,下面将对它们分别加以讨论。6.2 IIR(Infinite Impulse Response)滤波器的结构 IIR滤波器的传递函数 在有限z平面上有极点存在。它的单位脉冲响应 延续到无限长,而它的结构上的特性是存
4、在反馈环路,也即结构上是递归型的。具体实现起来,结构并不是唯一的。同一个传递函数,可以有各种不同的结构形式,其中主要的基本结构形式有以下几种:,(1)直接型 一个N阶IIR滤波器的传递函数可以表达为(6-1)用差分方程可以表达为,图6-5 N 阶数字滤波器的信号流图表达,(6-2),从这个差分方程表达式可以看出,是由两部分相加构成:第一部分 是一个对输入 的N节延时链结构,每节延时抽头后加权相加,也即是一个横向结构网络。第二部分 也是一个N节延时链的横向结构网络,不过它是对 延时,因此是个反馈网络。从图中我们可以看到,直接型结构需要2N级延时单元。,(6-2),(2)直接II型 上面直接型结构
5、中的两部分也可分别看作是两个独立的网络,其第一部分的传递函数为差分方程是其第二部分的传递函数为差分方程是,这两部分串接后即构成总的传递函数由于系统是线性的,显然将级联的次序调换不会影响总的结果。即其结构如图6-6所示。,图6-6 直接型的变形,即信号先经过反馈网络,其输出为中间变量再将 通过直馈网络,就得到系统的最后输出,改变级联次序后,将中间的两条完全相同的延时链合并。这样延时单元可以节省一倍,即N阶滤波器只需要N级延时单元。如图6-7所示,这种结构称为正准型结构或直接II型结构,而把直接型称为直接I型。,直接II型(正准型),图6-7 直接II型结构,(3)级联型 一个N阶的传递函数也可以
6、用它的零、极点来表示,也即它的分子、分母都表达为因子形式(6-3)由于 的系数 都是实系数,因此零极点 只有两种情况:或者是实根,或者是共轭复根。即,式中 表示实根;表示复根,并且。再将每一对共轭因子合并起来构成一个实系数的二阶因子,则如果把单实根因子也看作是二阶因子的一个特例:即二次项系数(或)等于零的二阶因子,则整个函数 可以完全分解成实系数二阶因子的形式,(6-4),这样滤波器就可以用若干二阶网络级联起来构成,这些二阶网络也成为滤波器的二阶基本节。它的传递函数的一般形式为这样一个二阶基本节可以采用直接II型结构来实现,整个滤波器则是他们的级联。整个结构如图6-8所示。,图6-8 结构图,
7、(4)并联型 将传递函数展开成部分分式就可以用并联的方式构成滤波器。对于其中的共轭复根部分,再将它们成对地合并为二阶实系数的部分分式,则其中,。,(6-5),这样就可以用L个一阶网络、M个二阶网络、以及一个常数A0网络并联起来组成滤波器H(z),其结构如图6-9所示。当然也可以全部采用二阶节的结构,这时可将式(6-5)中实根部分两两合并以形成二阶分式。,图6-9 滤波器结构图,IIR滤波器的几种结构形式的性能直接I型:需要2N级延时单元。直接II型:只需要N级延时单元,节省资源。直接(I,II)型在实现原理上是类似的,都是直接一次构成。共同的缺点是,系数ai、bi对滤波器性能的控制关系不直接,
8、调整不方便。更严重的是当阶数N较高时,直接型结构的极点位置灵敏度太大,对字长效应太明显,因而容易出现不稳定现象并产生较大误差。因此一般来说,采用另两种结构将具有更大的优越性。,级联型:每一个基本节只关系到滤波器的某一对极点和一对零点,便于准确实现滤波器的零、极点,也便于性能调整。级联结构可以由许多不同的搭配方式,在实际工作中,由于运算字长效应的影响,不同排列所得到的误差和性能也不一样。并联型:可以单独调整极点位置,但不能直接控制零点。在运算误差方面,并联型各基本节的误差互不影响,所以比级联型总的说,误差要稍小一些。因此当要求有准确的传输零点时,采用级联型最合适,其他情况下这两种结构性能差不多,
9、或许采用并联型稍好一点。,例6.1 IIR数字滤波器的系统函数H(z)为,画出该滤波器的直接型结构。解 由H(z)写出差分方程如下:,图6-10 例6.1图,6.3 FIR(Finite Impulse Response)滤波器的结构 有限长单位脉冲响应(FIR)滤波器的特点是它的 是一个有限长序列,例如长度为N。因此它的传递函数一般具有如下形式FIR滤波器具有以下几种基本结构形式。(1)横截型 将式(6-6)直接用差分方程表达,(6-6),(6-7),很明显,这就是一条输入 延时链的横向结构,如图6-11所示,稍加改变也可形成图6-12的结构。横截型的差分方程式(6-7)也就是信号的卷积形式
10、,因此横截型结构也可称为卷积型结构,有时也称为FIR直接型。,(2)级联型 当需要控制滤波器的传输零点时,可将传递函数分解为二阶实系数因子的形式:这样就可以用二阶节级联起来构成,如图6-13所示。这种结构的每一节控制一对零点,因而在需要控制传输零点时可以采用。但它所需要的系数 比直接型的 多,运算时所需的乘法运算也比直接型多。,(6-8),图6-13 二阶节级联,(3)线性相位FIR数字滤波器,在许多实际应用中,希望数字滤波器具有线性相位,FIR数字滤波器最吸引人的特点之一就是能将其设计成具有线性相位。具有线性相位的因果FIR数字滤波器的冲激响应 具有偶对称特性,即(6-9)图6-14 表示的
11、是线性相位FIR系统的典型冲激响应h(n)。现在来分析具有这样的冲激响应的FIR系统的幅度和相位特点.将FIR系统的系统函数重写为(6.10),图6-14 偶对称序列h(n),下面分两种情况进行讨论:(1)N为偶数时,利用式(6.9)得,(6.11),令,得系统的频率响应为,(6.12),令a(n)=,n=1,2,n,则可将式(6.12)写成,(6.13),于是系统的幅度响应和相位响应分别为,(6.14),(6.15),其中 对w=0,2 各点是偶对称的;相位响应是严格线性的,这与N为偶数时的情况一样。根据式(6.11)和式(6.12)分别画出N为偶数和奇数时,线性相位FIR滤波器的结构流程图
12、,如图6-15和图6-16所示,图6-15 具有线性相位N偶数N的FIR系统直接结构,从图中可以看出,线性相位N阶FIR滤波器只需要 次(N为偶数)或 次(N为奇数)乘法。用与上面相似的方法可以证明,当FlR系统的单位取样响应h(n)为奇对称,即时,系统同样具有线性相位特性。,图6-16 具有线性相位的奇数N的FIR系统直接结构,(6.16),由于线性相位FIR滤波器的冲激响应 必须满足对称,因此它的零点位置受到严格的限制。根据对称条件,有令,得到(6.17)式(6.17)表明,和 除相差 个样本间隔外,没有什么不同。因此,如果 是 的零点。那么 也是 的零点。,这就是说,线性相位FIR滤波器
13、的零点必须是互为倒数的共轭对。冲激响应为偶对称的线性相位FIR滤波器,它的系统函数多项式的系统是镜像对称的。例如,四阶系统的系统函数的形式是,而五阶系统的系统函数的形式是,(3)频率采样型 我们在前面讨论了有限长序列可以进行频域采样。现在既然 是长度为N的序列,因此也可以对传递函数 在单位元上作N等分采样,这个采样值也就是 的离散傅里叶变换值用频率采样表达z函数的内插公式:这个公式为我们实现FIR滤波器提供了另外一种结构,这种结构是由两部分级联而成。,(6-18),第一部分 是一个由N节延时单元所构成的梳状滤波器:它在单位圆上有N个等分的零点:它的频响是梳齿状的,如图6-18所示。,(6-19
14、),(6-20),图6-17 梳状滤波器,第二部分是一组并联的一阶网络:其中每一个一阶网络都是一个谐振器,构成一个谐振器柜:这个一阶网络在单位圆上有一个极点:,(6-21),图6-18 梳齿状频响,因此网络对频率为 的响应将是,所以,网络是一个谐振频率为 的无耗谐振器。这些并联谐振器的极点正好各自抵消一个梳状滤波器的零点,从而使在这个频率点上的响应等于。,由这样两部分级联起来后,就得到图6-19所示的总结构。这个结构的特点是它的系数 直接就是滤波器在 处的响应。因此控制滤波器的响应是很直接的。,图6-19 频率采样型,但是这个结构有两个主要的缺点:一是所有的相乘系数 都是复数,乘起来较麻烦。二
15、是所有谐振器的极点都在单位圆上,考虑到系数量化的影响,有些极点实际上是不能与梳状滤波器的零点相抵销的,这样,系统是不稳定的。,为了克服这个缺点,首先我们做一点修正,将所有的谐振器的极点从单位圆向内收缩一点,使它处在一个靠近单位圆但半径比单位圆小 的圆上,同时,梳状滤波器的零点也移到r圆上,也即将频率采样由单位圆移到修正半径圆上,如图6-20。这时,其中 是修正点上的采样值,但由于修正半径,因此。即,图6-20 将频率采样由单位贺移到修正半径圆上,因此另外,为了使系数为实数,可以将谐振器的共轭根合并,这些共轭根在圆周上是对称的。即同时,如果 是实数的话,它的DFT也是周期共轭对称的。因此,可以将
16、第 及第 个谐振器合并为一个二阶网络:,(6-22),其中这个二端网络是一个有限Q值的谐振器。谐振频率为,结构如图6-21所示。,(6-23),(6-24),图6-21 结构图,除了共轭复根外,尚有实根。当N为偶数时,有一对实根,它们分别为,因此尚有两个对应的一阶网络:其结构如图6-22所示。当N为奇数时,只有一个实根,因此相对应只有一个一阶网络。,(6-25),(6-26),图6-22 结构图,这样就可以得到改进后的总结构。N为偶数时但是,N为奇数时,(6-27),(6-28),当N为偶数时,其总结构如图 6-23,在谐振器柜中,两端两个是一阶的,其余中间的都是二阶的。但是当N为奇数时,最后
17、一个一阶网络 就不必要了。这种结构我们可以看到,既有递归部分谐振器柜,也有非递归部分梳状滤波器。,图6-23 频率采样总结构,一般看,频率采样的结构比较复杂,所需的存储器及乘法器也比较多。但是在以下几种情况下,使用频率采样结构却可以带来一定的好处。如果多数采样值 为零,例如在窄带低通滤波器的情况下,这时谐振器柜中只剩下少数几个所需要的谐振器,因而可以比直接法少用乘法器,但存储器还是要比直接法用得多一些。在有些情况下,信号处理需要同时使用很多并列的滤波器。例如在信号频谱分析中,要求同时将信号的各种频率分量分别滤出来,这是这些并列的滤波器可以采用频率采样结构。并且可以大家公用一个梳状滤波器及谐振器柜,只要将各谐振器的输出适当加权组合就能组成各所需滤波器,这样的结构就有很大的经济性。,频率采样的结构还有一个本身的特点,就是它的每个部分都具有很高的规范性。只要改变二阶谐振节中的系数 及一阶节中的 系数 就可以构成不同的滤波器,而不用改变整个结构以及其他各系数,因此做时分复用时有一定好处。,小结:1.数字滤波器结构的表示方法(信号流图法)2.IIR数字滤波器的基本结构 直接型,转置型,级联型,并联型3.FIR数字滤波器的基本结构 直接型(横截型、卷积型),级联型,频率采样结构 线性相位FIR滤波器结构,
链接地址:https://www.31ppt.com/p-2228893.html