氨基酸生产.ppt.ppt
《氨基酸生产.ppt.ppt》由会员分享,可在线阅读,更多相关《氨基酸生产.ppt.ppt(124页珍藏版)》请在三一办公上搜索。
1、25 氨基酸发酵工艺,25.1 概述25.2 氨基酸发酵的代谢控制25.3 氨基酸发酵的工艺控制25.4 谷氨酸生产工艺25.5 赖氨酸生产工艺简介,25.1 概述,近40多年来,国内外在研究、开发和应用氨基酸方面均取得重大进展,新发现的氨基酸种类和数量已由20世纪60年代50种左右,发展到20世纪80年代的400种,目前已达1000多种。其中用于药物的氨基酸及氨基酸衍生物的品种达100多种。氨基酸分为两大类,即蛋白质氨基酸和非蛋白质氨基酸。氨基酸中有8种氨基酸人体本身不能合成,只能从食物的蛋白质中摄取,称为必需氨基酸,它们是L-赖氨酸、L-色氨酸、L-苏氨酸、L-缬氨酸、L-亮氨酸、L-异亮
2、氨酸、L-苯丙氨酸和L-蛋氨酸。还有两种半必需氨基酸,即精氨酸和酪氨酸。,25.1 概述,25.1.1氨基酸的应用 1、食品工业:营养强化剂;鲜味剂;甜味剂。2、饲料工业:营养强化剂。3、医药工业:氨基酸输液;氨基酸衍生物;氨基酸盐。4、化学工业:洗涤剂;护肤品;人造革。5、农业:无公害农药。,25.1 概述,氨基酸的应用食品工业:强化食品:谷物中缺赖氨酸,苏氨酸,色氨酸、蛋氨酸。增鲜剂:谷氨酸单钠和天冬氨酸。甜味剂:苯丙氨酸与天冬氨酸可用于制造低热量二肽甜味剂(-天冬酰苯丙氨酸甲酯),此产品1981年获FDA批准,现在每年产量已达数万吨。,25.1 概述,氨基酸的应用食品工业:大豆蛋白的氨基
3、酸组成影响其营养效价。,25.1 概述,氨基酸的应用医药工业:多种复合氨基酸制剂可通过输液治疗营养或代谢失调 苯丙氨酸与氮芥子气合成的苯丙氨酸氮芥子气对骨髓肿瘤治疗有效,且副作用低。,25.1 概述,氨基酸的应用饲料工业:不可缺少的营养性添加剂,一般生长期添加赖氨酸,产蛋期添加蛋氨酸,饲料配制时必需计算氨基酸平衡。,25.1 概述,氨基酸的应用化学工业十二烷基谷氨酸钠肥皂-无皮肤刺激洗涤剂焦谷氨酸钠-润肤剂聚谷氨酸人造革、人造纤维和涂料,25.1 概述,氨基酸的应用农业特殊的氨基酸农药如N-月桂酰-L-异戊氨酸,能防治稻瘟病,又能提高稻米的蛋白质含量。氨基酸烷基酯及N-长链酰基氨基酸能提高农作
4、物对病害的抵抗力,具有和一般杀虫剂一样的效果。,25.1 概述,25.1.2氨基酸的生产方法 1、发酵法(1)直接发酵 第一类用野生菌株直接由糖和铵盐发酵生产氨基酸,如谷氨酸、丙氨酸和缬氨酸。第二类用营养缺陷型突变株直接由糖和铵盐发酵生产氨基酸,如谷氨酸棒状杆菌的高丝氨酸缺陷型生产赖氨酸;酪氨酸缺陷型生产苯丙氨酸;苯丙氨酸缺陷型生产亮氨酸;亮氨酸缺陷型生产缬氨酸。,25.1 概述,氨基酸的生产方法 第三类用抗氨基酸结构类似物突变株,如利用乳糖发酵短杆菌 的S-(2-氨基乙基)-L-半胱氨酸(AEC,赖氨酸结构类食物)抗性菌株生产赖氨酸。利用黄色短杆菌的5-甲基色氨酸(5-MT,酪氨酸结构类似物
5、)抗性菌株生产酪氨酸。第四类抗氨基酸结构类似物突变株的营养缺陷型菌株,如利用乳糖发酵短杆菌的抗AEC腺嘌呤、鸟嘌呤缺陷型生产赖氨酸。营养缺陷型回复突变株发酵。,(2)添加前体的发酵:通过添加氨基酸的前体或中间产物,以避免生物合成途径中的反馈抑制,如以吲哚为前体,利用麦角菌生产色氨酸。,25.1 概述,氨基酸的生产方法 2、酶法:利用酶来制造氨基酸。应用完整菌体或从微生物细胞抽提的酶类合成氨基酸。天冬氨酸已于1973年应用完整菌体固定化进行生产,这是世界上最早应用固定化菌体的例子。赖氨酸、色氨酸、丙氨酸也可以生产。,25.1 概述,3、提取法:蛋白质水解液中提取。胱氨酸、半胱氨酸和酪氨酸。4、合
6、成法:DL-蛋氨酸、丙氨酸、甘氨酸、苯丙氨酸,蛋氨酸和甘氨酸现在仍大量应用合成法。传统的提取法、酶法和化学合成法由于前体物的成本高,工艺复杂,难以达到工业化生产的目的。近年来,由于微生物代谢调控理论的研究,使得大部分氨基酸得以发酵生产。,25.1 概述,25.1.3氨基酸的国内外生产概况 日本和德国为世界主要氨基酸生产国。日本的味之素、协和发酵及德国的德固沙是世界氨基酸生产的三巨头。它们能生产高品质的氨基酸,可直接用于输液制剂的生产。日本在美国、法国等建立了合资的氨基酸生产厂家,生产氨基酸和天冬甜精等衍生物。,25.1 概述,氨基酸的国内外生产概况 国内生产主要氨基酸生产厂:天津氨基酸公司、湖
7、北八峰氨基酸公司 生产规模及产品质量与国外大厂有较大差距。在80年代中后期,我国从日本的味之素、协和发酵以技贸合作的方式引进输液制剂的制造技术,1991年销售量为二千万瓶,1996年达六千万瓶,主要厂家有无锡华瑞,北京费森尤斯,昆明康普莱特,但生产原料都依赖进口。,反馈调节作用,1、终产物反馈阻遏和反馈抑制 野生型菌株“A”氨基酸合成操纵子模型,AR,P,O,A结构基因,无活性repressor,A,RNA聚合酶,反馈阻遏,活性,A合成酶系(E1,E2),A,反馈抑制,超过生理需要量,野生型菌株酶合成水平的反馈阻遏,25.2 氨基酸发酵的代谢控制与育种,野生型菌株酶活性水平的反馈抑制,过量A作
8、用效应物位点,酶构型变化,影响酶活性中心而失活,Gene编码酶,效应物位点 过量A,酶活中心,反馈阻遏与反馈抑制比较,2、解除反馈阻遏、反馈抑制突变株的选育,野生型菌株,诱变,解除反馈调节突变株,AR-或AO-,AR-AO-,酶基因突变,解除反馈调节突变株可以大量积累末端产物筛选方法:解除Lys反馈调节突变株筛选,野生型菌株,诱变,菌细胞,正常反馈调节型,解除反馈调节突变型,25.2.1 氨基酸生物合成的调节机制,25.2.1.1反馈抑制与优先合成,反馈抑制,反馈阻遏,氨基酸生物合成调节机制的基本模式,25.2 氨基酸发酵的代谢控制与育种,25.2.1 氨基酸生物合成的调节机制,氨基酸生物合成
9、的基本调节机制有反馈控制和在合成途径分支点处的优先合成。反馈控制机制如上图,催化合成途径最初反应AB的初始酶受终产物E的反馈抑制,同时,合成途径上各种酶的合成受终产物E的阻遏。,25.2.1 氨基酸生物合成的调节机制,在途径分支点处优先合成的调节机制如下图,在分支点后,其中的一个终产物E优先合成,优先合成的关键酶,即催化CD反应的酶受E的反馈控制,催化AB共用酶受第二个终产物G的反馈控制。首先,E比G优先合成,E过剩时,反馈抑制CD反应的酶,转换为合成G。G过剩时,催化AB反应的酶,就会为G所控制。假如人为让特定氨基酸如G过剩,就会因E的合成不足而影响细菌生长。,25.2.1.1其他特殊的控制
10、机制1.多终产物控制 催化分支合成途径共同部分的初始酶,在仅一种氨基酸终产物过剩时,完全不受或微弱或部分地反馈抑制(或阻遏),只是在多数终产物共存下才强烈地控制。有以下几种情况:,协同(或多价)反馈抑制:协同反馈抑制:指分支代谢途径中的几个末端产物同时过量时才能抑制共同途径中的第一个酶的一种反馈调节方式,合作(或增效)反馈抑制:系指两种末端产物同时存在时,可以起着比一种末端产物大得多的反馈抑制作用。,同功酶控制:同功酶是指能催化相同的生化反应,但酶蛋白分子结构有差异的一类酶,它们虽同存于一个个体或同一组织中,但在生理、免疫和理化特性上却存在着差别。同功酶的主要功能在于其代谢调节。在一个分支代谢
11、途径中,如果在分支点以前的一个较早的反应是由几个同功酶所催化时,则分支代谢的几个最终产物往往分别对这几个同功酶发生抑制作用而不致过剩,积累反馈抑制:每一分支途径的末端产物按一定百分率单独抑制共同途径中前面的酶,所以当几种末端产物共同存在时,它们的抑制作用是累积的。,2、顺序反馈抑制:当E过多时,可抑制CD,这时由于C的浓度过大而促使反应向F、G方向进行,结果又造成了另一末端产物G浓度的增高。由于G过多就抑制了CF,结果造成C的浓度进一步增高。C过多又对AB间的酶发生抑制,从而达到了反馈抑制的效果。这种通过逐步有顺序的方式达到的调节,称为顺序反馈抑制,顺序控制:,A,B,C,D,E,F,G,A,
12、B,C,D,3.平衡合成:,经分支合成途径生产两种终产物E和G,E和G取平行合成。E优先合成,E过剩时,反馈控制与优先合成有关的催化CD的酶,转而合成G。G过剩时,可逆转E的反馈控制,即E的反馈控制为G所抑制,又转为优先合成E。,B,C,D,E,F,G,4.代谢互锁:从生物合成途径看,是受一种完全无关的氨基酸的控制。它只是在很高浓度下(与生理学浓度相比)才能体现抑制作用,而且是部分性的抑制(阻遏)作用。,25.2 氨基酸发酵的代谢控制与育种,1、控制发酵的环境条件 氨基酸发酵受菌种的生理特性和环境条件的影响,对专性需氧菌来说环境条件的影响更大。谷氨酸产生菌因环境条件的影响会引起发酵的转换,生成
13、各种不同的产物。,25.2.2生产中代谢控制的措施,25.2 氨基酸发酵的代谢控制,溶解氧:乳酸或琥珀酸谷氨酸酮戊二酸(通气不足)(适中)(通气过量、转速过快)NH4+:酮戊二酸谷氨酸谷酰胺(缺乏)(适量)(过量)pH:谷酰胺,N乙酰谷酰胺谷氨酸(pH58,NH4+过多)(中性或微碱性)磷酸:缬 氨 酸谷氨酸(高浓度磷酸盐)生物素:乳酸或琥珀酸谷氨酸(过量)(限量),25.2 氨基酸发酵的代谢控制,2、控制细胞渗透性 代谢产物的细胞透性是氨基酸发酵的重要因素,只有使细胞内的氨基酸渗透到细胞外,才能大量积累氨基酸。(1)生物素、油酸和表面活性剂,引起细胞膜的脂肪酸成分的改变。(2)青霉素:抑制细
14、胞壁的合成,由于细胞内外的渗透压的差异使谷氨酸泄漏出来。,25.2 氨基酸发酵的代谢控制,25.2 氨基酸发酵的代谢控制,3、控制旁路代谢 例如:L异亮氨酸的生物合成可由L苏氨酸改为D苏氨酸途径,即采用旁路代谢。,25.2 氨基酸发酵的代谢控制,25.2 氨基酸发酵的代谢控制,4、降低反馈作用物的浓度 控制反馈作用物浓度,克服反馈抑制和阻遏,使氨基酸的生物合成反应能够顺利进行。,25.2 氨基酸发酵的代谢控制,25.2 氨基酸发酵的代谢控制,5、消除终产物的反馈抑制与阻遏作用 消除终产物的反馈抑制与阻遏作用,是通过使用抗氨基酸结构类似物突变株的方法来进行。例:利用抗性突变株消除S(氨基乙酸)L
15、半胱氨酸(即AEC)(赖氨酸的结构类似物)与L苏氨酸的协同抑制。,25.2 氨基酸发酵的代谢控制,25.2 氨基酸发酵的代谢控制,6、促进ATP的积累,增加氨基酸的生物合成 氨基酸的生物合成需要能量,ATP的积累可促进氨基酸的生物合成。,25.2 氨基酸发酵的代谢控制,25.2 氨基酸发酵的代谢控制与育种,25.2.3氨基酸产生菌的定向育种代谢控制发酵:根据菌种的代谢特性,人为改变菌种的代谢调控机制,使微生物体内的的代谢流按照人们所要求的方向进行,过量积累氨基酸。代谢控制发酵的前提是选育出特定的菌种。氨基酸菌种选育的成果是代谢调控理论应用于育种实践的成功典范。,选择出发菌株:前人经验;代谢途径
16、简单、清楚;易于解除代谢控制机制。育种原理:部分或全部解除微生物对氨基酸合成代谢的自我调节机制育种方法:传统方法 现代方法 定向育种,25.2.3.1解除反馈调节-结构类似物抗性株选育 所谓结构类似物(又称代谢拮抗物)是指那些在结构上和代谢终产物(氨基酸、嘌呤、维生素等)相似的物质。如:异烟肼(“雷米封”)是吡哆醇的结构类似物,利用含异烟肼梯度平板筛选异烟肼抗性突变株,可达到定向培育吡哆醇高产突变株的目的。为什么在筛选突变株时,不能直接用代谢产物,而必须用其结构类似物?,25.2.3.2切断支路代谢营养缺陷型的选育野生型菌株经诱变剂处理后,由于发生了丧失某种酶合成能力的突变,因而只能在加有该酶
17、合成产物的培养基中才能生长的突变菌株(主要指合成维生素、氨基酸及嘌呤、嘧啶的能力)。营养缺陷型切断一些相关的代谢流,消除了协同控制机制,可以过量积累特定氨基酸。利用营养缺陷型菌株生产时,营养缺陷物质的添加量一般在亚适量水平,否则引起反馈抑制。目前,营养缺陷型和抗结构类似物育种常联合,25.2.3.3优先合成的转换渗漏缺陷型的选育通过诱变,使分支代谢途径中优先合成途径中高活性的酶活性降低,代谢流转换进入非优先合成的途径,使其终产物氨基酸过量积累。如下图,赖氨酸合成中,如果降低高丝氨酸脱氢酶活性,则优先合成赖氨酸。,O-琥珀酸高丝氨酸,天冬氨酸,天冬氨酰磷酸,天冬氨酸-半醛,高丝氨酸,二氢吡啶-2
18、,6-二羧酸,赖氨酸,高丝氨酸磷酸,苏氨酸,蛋氨酸,异亮氨酸,优先合成,反馈抑制,阻遏,25.2.3.4选育温度敏感突变株通过诱变,选育出在低温条件下能正常生长,而在高温条件下不能生长的菌株,称为温度敏感突变株。这是因为突变株基因发生转换或颠转,编译的酶对温度敏感,在高温时成为营养缺陷型。,25.2.3.5改变细胞膜的通透性把合成的氨基酸尽快排出细胞外,预防反馈抑制,大量合成氨基酸。如、生物素缺陷型、油酸缺陷型和甘油缺陷型。,25.3氨基酸生产工艺,氨基酸本身的合成在不同生物体中,有较大的差异,然而许多氨基酸的合成途径在不同生物体中也有共同之处。按照起始物可将氨基酸的合成分成几个家族:谷氨酸族
19、(-酮戊二酸族)包括:谷氨酸、谷氨酰胺、精氨酸、赖氨酸和脯氨酸;丙酮酸族 包括:丙氨酸、缬氨酸、亮氨酸;天冬氨酸族(草酰乙酸族)包括:天冬氨酸、天冬酰胺、蛋氨酸、苏氨酸和异亮氨酸;磷酸甘油酸族 包括:甘氨酸、丝氨酸和半胱氨酸;芳香族 包括:苯丙氨酸、酪氨酸、色氨酸;另外,组氨酸的合成为单独的一条途径。,25.3.1氨基酸的生物合成,氨基酸的生物合成,25.3.1.1 谷氨酸的生物合成途径与代谢调节,生产谷氨酸的主要菌株生成谷氨酸的主要酶反应谷氨酸生物合成的理想途径谷氨酸发酵的代谢途径,Glu发酵常用菌种 谷氨酸棒杆菌(C.glutamicum)北京棒杆菌(C.peiking AS.1229)黄
20、色短杆菌(Brevibacterium flavum)乳糖发酵短杆菌(B.lactofermentum),1、谷氨酸发酵的代谢途径,生成的丙酮酸,一部分在丙酮酸脱氢酶系的作用下氧化脱羧生成乙酰CoA,另一部分经CO2固定反应生成草酰乙酸或苹果酸,催化CO2固定反应的酶有丙酮酸羧化酶、苹果酸酶和磷酸烯醇式丙酮酸羧化酶。草酰乙酸与乙酰CoA在柠檬酸合成酶催化作用下,缩合成柠檬酸,进入三羧酸循环,柠檬酸在顺乌头酸酶的作用下生成异柠檬酸,异柠檬酸再在异柠檬酸脱氢酶的作用下生成-酮戊二酸,-酮戊二酸是谷氨酸合成的直接前体。-酮戊二酸在谷氨酸脱氢酶作用下经还原氨基化反应生成谷氨酸,CO2固定酶系活力强,C
21、itrate synthase,Aconitase,ICDH,GDH酶活力强,乙醛酸循环弱,异柠檬酸裂解酶活力欠缺或微弱,-酮戊二酸氧化能力缺失或微弱,谷氨酸脱氢酶能力强,控制谷氨酸合成的重要措施,乙醛酸循环的作用,谷氨酸发酵的代谢途径,乙醛酸循环途径可看作三羧酸循环的支路和中间产物的补给途径在菌体生长期之后,进入谷氨酸生成期,为了大量生成、积累谷氨酸,最好没有异柠檬酸裂解酶催化反应,封闭乙醛酸循环,2 谷氨酸生物合成的调节机制,优先合成与反馈调节生物素的调节作用,优先合成 谷氨酸比天冬氨酸优先合成,谷氨酸合成过量后,就会抑制和阻遏自身的合成途径,使代谢转向合成天冬氨酸柠檬酸合成酶的调节 柠檬
22、酸合成酶是三羧酸循环的关键酶,除受能荷调节外,还受谷氨酸的反馈阻遏和顺乌头酸的反馈抑制,(1)优先合成与反馈调节,-酮戊二酸脱氢酶的调节在谷氨酸产生菌中,-酮戊二酸脱氢酶活性微弱谷氨酸脱氢酶的调节 谷氨酸对谷氨酸脱氢酶存在着反馈抑制和反馈阻遏-酮戊二酸合成后由于-酮戊二酸脱氢酶活性微弱,谷氨酸脱氢酶的活力很强,故优先合成谷氨酸,Glc,丙酮酸,草酰乙酸,CO2,天门冬氨酸(Asp),AC-coA,CO2,羧化酶,柠檬酸,顺乌头酸,异柠檬酸,-酮戊二酸,Glu,反馈抑制,谷氨酸,脱氢酶,-酮戊二酸,脱氢酶,合成酶,反馈阻遏,Glu产生菌主要生理生化特性 需氧,生物素缺陷型bio-,有乙醛酸循环,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 氨基酸 生产 ppt
链接地址:https://www.31ppt.com/p-2209295.html