蛋白质结晶学和X光衍射基础.ppt.ppt
《蛋白质结晶学和X光衍射基础.ppt.ppt》由会员分享,可在线阅读,更多相关《蛋白质结晶学和X光衍射基础.ppt.ppt(126页珍藏版)》请在三一办公上搜索。
1、蛋白质结晶学和X光衍射基础,分子酶学工程教育部重点实验室郑柏松 讲师,生物物理学生物大分子结构解析,授课内容,历史的回顾X光衍射原理蛋白质表达、纯化蛋白质结晶X光衍射及数据收集结构解析,授课目的,了解生物物理学发展历史与前沿;掌握蛋白质结晶学和X光衍射基础知识;开阔视野贴近国际一流结构生物学实验室;培养兴趣增强对科研工作的感性和理性认识。,蛋白质三维结构测定方法,X-射线晶体学电子显微学(低温电子显微技术与三维象重构)核磁共振波谱学,1895年德国物理学家伦琴发现X射线并因此获得1901年首届诺贝尔物理学奖,X射线历经110年跨越3个世纪,由于众多学者在探索X射线性质、应用、仪器等方面的创新性
2、研究,先后有29位物理学家、晶体学家、化学家、分子生物学家等分别获得了物理(7项)、化学(9项)、生理学或医学(3项)总计19项诺贝尔奖。,历史的回顾,1912年劳厄获得了X射线通过晶体后产生的衍射斑点图像(劳厄衍射图),证明了X射线的波动性及其波长范围。随后提出了表示原子排列周期与X射线波长间关系的著名的衍射方程(劳厄方程),并成功地解释了晶体衍射的实验结果。英国物理学家布拉格父子、达尔文等人发展了X射线衍射理论,类比光学反射原理提出了表示晶体结构(晶面间距d)、X射线波长()与衍射方位()间的关系的布拉格方程,提出了嵌镶晶体、完整晶体和包含有原子热运动诸因素的衍射强度公式,阐明了X射线通过
3、晶体产生衍射的付里叶变换本质,获得了X射线的连续光谱与取决于阴极材料的特征光谱。,历史的回顾,最终X射线衍射成为有机分子(特别是生物活性分子)立体结构测定的有力工具,为研究生理活性物质(药物分子)的立体结构、结构改造、结构预测、结构功能关系为目标的有机晶体学科奠定了基础。对于生物大分子的研究,始于30年代中期,贝纳尔和藿奇金开始用X射线衍射方法研究胃蛋白酶的晶体结构,但直到布拉格主持凯文迪实验室后,才使得这一工作取得突破,为创建分子生物学科奠定了基础。1953年沃森和克里克根据X衍射实验数据建立了脱氧核糖核酸(DNA)的双螺旋结构,并因此获得1962年的诺贝尔生理学和医学奖。,历史的回顾,肯德
4、鲁和佩卢茨从30年代开始,应用X衍射方法研究肌红蛋白与血红蛋白的晶体结构,历经20多年的艰苦努力,在众多科学家的共同参与下,终于在1960年获得了这两个蛋白质的三维结构,并因此荣获1962年的诺贝尔化学奖。在1957至1967年的10年中,相继用X衍射方法测定了溶菌酶、胰岛素、胰凝乳蛋白酶A、核糖核酸酶、核糖核酸酶S和羧肽酶的高分辨晶体结构。戴森豪菲尔和胡贝尔、米海尔因测定紫色细菌光合作用中心的三维结构而获得1988年的诺贝尔化学奖,形成了新的蛋白质晶体学科与结构分子生物学科。,历史的回顾,X-射线,X 射线和可见光一样属于电磁辐射,但其波长比可见光短得多,介于紫外线与 射线之间,约为102
5、到102 埃的范围。,X光衍射原理,X-射线,X光衍射原理,X 射线和其它电磁波一样,能产生反射、折射、散射、干涉、衍射、偏振和吸收等现象。但是,在通常实验条件下,很难观察到X 射线的反射。不可能像可见光那样用透镜成像。对于所有的介质,X 射线的折射率n都很接近于1(但小于1),所以几乎不能被偏折到任一有实际用途的程度。在物质的微观结构中,原子和分子的距离(1 10 埃左右)正好落在X 射线的波长范围内,所以物质(特别是晶体)对X 射线的散射和衍射能够传递极为丰富的微观结构信息。X 射线衍射方法是当今研究物质微观结构的主要方法。X 射线穿透物质时都会被部分吸收,其强度将被衰减变弱;吸收的程度与
6、物质的组成、密度和厚度有关。在此过程中X 射线与物质的相互作用是很复杂的,会引起多种效应。例如,可以使气体电离;使一些物质发出可见的荧光;能破坏物质的化学键,引起化学分解,也能促使新键的形成,促进物质的合成;作用于生物细胞组织,还会导致生理效应,使新陈代谢发生变化甚至造成辐射损伤。X 射线散射的过程又可分为两种,一种是只引起X 射线方向的改变,不引起能量变化的散射,称为相干散射,这是X 射线衍射的物理基础;另一种是既引起X 射线光子方向改变,也引起其能量的改变的散射,称为不相干散射或康普顿散射(或康普顿效应),此过程同时产生反冲电子(光电子)。,衍射的几何方程,布拉格方程,劳埃(Laue)方程
7、,X 射线照射到晶体上发生散射,其中衍射现象是X 射线被晶体散射的一种特殊表现。晶体的基本特征是其微观结构(原子、分子或离子的排列)具有周期性,当X 射线被散射时,散射波中与入射波波长相同的相干散射波,会互相干涉,在一些特定的方向上互相加强,产生衍射线。晶体可能产生衍射的方向决定于晶体微观结构的类型(晶胞类型)及其基本尺寸(晶面间距,晶胞参数等);而衍射强度决定于晶体中各组成原子的元素种类及其分布排列的坐标。,X光衍射原理,X光衍射原理,劳埃(Laue)方程和布拉格(Bragg)方程确定了衍射方向与晶体结构基本周期的关系,通过对衍射方向的测量,理论上我们可以确定晶体结构的对称类型和晶胞参数。而
8、X射线对于晶体的衍射强度则决定于晶体中原子的元素种类及其排列分布的位置。,X光衍射原理,What we can do?,挑战和机遇?,克隆、表达、纯化 结晶 数据收集及处理 相角的测定 相角的改进(优化)电子密度图的解释 修正 结构的描述和与功能关系的研究,Structural Biology Processes,Recombinant protein over-expression and purification,Expression systems:Bacteria systemYeastInsect cellsMammalian cellsCell-free system,蛋白质表达、
9、纯化,Some Vectors for E.coli Expression System,蛋白质表达、纯化,Protein Expression in Yeast,Cloning of target gene to vector,Transform to yeast Pichia pastoris,Selection of recombinant yeast strain,Yeast cell culture for protein production,蛋白质表达、纯化,Protein Expression in Insect Cells,After recombination,Clonin
10、g of target gene to pFastBac,Transform to bacteria with Bacmid,Bacmid transfected to insect cells,Virus assembly in insect cells,Viruses infect Insect Cells for protein production,Strains for expression:Sf9,Sf21,Hi5,蛋白质表达、纯化,Transient Expression In Mammalian Cells,293E cell can be cultured in suspen
11、sion medium,Recombinant plasmid with target gene,Transfect to 293E cells with PEI,Harvest cells for protein purification,蛋白质表达、纯化,293EBNA1 Cells With GFP Expressing Vector,A,B,Whole cells on plate;Cells in the same plate to A viewed by GFP florescence,蛋白质表达、纯化,Recombinant Proteins Expression In 293E
12、BNA1 Cells,Lanes:1.Protein standard;2.Control whole 293E cells;3.GFP expressed 293E cells;4.HCF-1N380 expressed 293E cells;5.HCF-1N16-363 expressed 293E cells.,Recombinant protein 1(lane 4),1 2 3 4 5,14,20,31,45,67,94,Recombinant protein 2(lane 5),GFP(lane3),蛋白质表达、纯化,Cell-free System for Protein Pro
13、duction,Sometimes it can produce soluble protein which can not be expressed as soluble form with cellular system.,Roche:Rapid Translation System(RTS),Rapid protein expression,Toxic protein expression,蛋白质表达、纯化,ProteinProtein Complex Expression and Purification:a.Proteins express separately;b.Proteins
14、 co-express in one cell.2.Protein-Nucleic Acid:a.Protein-DNA Complex;b.Protein-RNA Complex.,Producing Protein Complexes for Crystallization,蛋白质表达、纯化,Methods for production of recombinant protein complexes by in vivo reconstitution in E.coli1.Use compatible vectors,such as pMR101(p15A ori)and pET15B(
15、pBR322 ori);2.Use one vector with more than one expression cassettes-polycistronic;Benefits of in vivo reconstitution(coexpression)efficiencyone round of expressionone round of purificationqualitycoexpression and cofolding of polypeptides in the presence of cellular chaperones may increase yield of
16、functional complex,ProteinProtein Complex Expression and Purification,蛋白质表达、纯化,ProteinDNA Complex,Protein solubility:higher in high salt buffer usually;Protein-DNA complex stability:more stable than protein alone;DNA length and sequence used for crystallization:a.additional base pairs;b.sticky ends;
17、4.Purification of DNA oligos:HPLC with hydrophobic interaction,C4 etc;5.Trapping reaction intermediate:disulfide bridge;protein point mutation,etc;6.Preparation of protein-DNA complexes:mix with extra molar DNA;Crystallization:PEG or MPD in low slat buffer;Example:over 6000 trial for protein-DNA com
18、plex.,蛋白质表达、纯化,Protein-RNA Complex,Difficulties:avoid of RNase!1.Phosphate groups interfere crystal packing;2.Elongated RNAs pack loosely;RNA engineering:blunt or sticky ends;deletion,replacement,etc;RNA preparation:1.Synthesis;2.In vitro transcription;,蛋白质表达、纯化,Protein Modification for Crystallizat
19、ion,Protein inhibitor,partner and monoclonal antibody;Protein post-translational modification;3.Protein mutagenesis:truncation,mutation,deletion,蛋白质表达、纯化,Purification,Fundamental Purification TechniquesAffinity:by tags or antibodies;Ion exchange;Size exclusion;Hydrophobic interaction;Aim:Obtain high
20、 purity and homogenous protein sample,蛋白质表达、纯化,蛋白质表达、纯化,Purity&Homogenity,Purity CheckSDS-PAGEHomogenity CheckNative PAGE,Dynamic Light Scattering(DLS)The DLS profile of a protein is highly predictive of its crystallizability.Proteins with monomodal distributions have a high probability(70-80%)of pr
21、oducing some kind of crystals.,SDS-PAGE,Native-PAGE,蛋白质表达、纯化,Affinity Chromatography,PrincipleBiospecific ligand covalent attached to the matrixCharacteristicsSpecific;High yieldFusion proteinFusions with oligo-HistidineFusion with GSTFusion with Protein AScFv fusions with E-tagFusion with intein,蛋白
22、质表达、纯化,Ion-exchange,Principle:Based on charge difference among different proteinsCharacteristics No limitation to sample columnExpeditious,蛋白质表达、纯化,Gel Filtration,Principle:According to differences in sizes Characteristics Much limitation on sample volumeLow velocity compare to ion-exchange,蛋白质表达、纯化
23、,Crystal,蛋白质的结晶,什么是晶体?晶体:由原子(或离子、分子)在空间周期排列构成的固体物质。如果原子(或离子、分子)是按照一种确定的方式在三维空间作严格的周期性的规律排列,即相隔一定的距离,周期重复出现,这样的物质称为晶体或单晶体。晶体一定是固体物质,但是固体物质不一定是晶体。晶体的分布非常广泛,自然界的固体物质中,绝大多数是晶体。气体、液体和非晶态物质在一定条件下也可以转变成晶体。日常生活中的食盐、糖、水晶、宝石等均为晶态物质晶体。非晶体:物质内部原子杂乱无章地分布,没有周期性排列的规律,此类固体物质称为非晶体或者称为非晶态物质。玻璃、塑料、松香、陶瓷、生物制品、纤维、淀粉、多糖、
24、无定形药物等,是固体中常见的非晶态物质。,蛋白质的结晶,如何形成晶体?,蛋白质结晶原理,蛋白质在其溶液中的结晶其实是一种缓慢沉淀的过程。溶液中存在的作用力有疏水相互作用、静电力、氢键作用力等,当吸引力与排斥力达到平衡时溶液处于稳定状态。当吸引作用增大,或分散的或排斥的相互作用减小时,分子开始趋向与聚集状态。例如在液态环境中,如果生物大分子溶液很浓,没有足够的水维持其溶剂化作用,则分子可能聚集成非晶态沉淀,也可能结晶出来。常用的使蛋白质沉淀的方法是加入沉淀剂,这种方法是通过降低水的流动性来增加蛋白质的有效浓度。常用沉淀剂:聚乙二醇(PEG),盐(如硫酸铵)。另外一种方法:减小蛋白质分子间的排斥力
25、或是增大他们之间的吸引力。如加入有机溶剂,改变溶液的PH,温度等。,蛋白质的结晶,蛋白质结晶方法,蛋白质的结晶,蛋白质结晶方法整批结晶法透析法液液扩散法气相扩散法,整批结晶法(batch crystallization)这是最古老也是最简单的蛋白质结晶的方法。该方法的原理是瞬间将沉淀剂加入蛋白质溶液中,使溶液突然达到高度饱和状态。如果运气好的话,晶体会逐渐从过饱和溶液中析出并且不需要其他步骤。,蛋白质的结晶,透析法(dialysis)适用于对于大量蛋白质样品进行结晶。,微量透析法(liquid-liquid diffusion)图a和图b中,蛋白质溶液保留在毛细管中。图c中,蛋白质溶液被甩到管
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 蛋白质 结晶学 衍射 基础 ppt

链接地址:https://www.31ppt.com/p-2207892.html