231直线与平面垂直的判定.ppt
《231直线与平面垂直的判定.ppt》由会员分享,可在线阅读,更多相关《231直线与平面垂直的判定.ppt(40页珍藏版)》请在三一办公上搜索。
1、2.3.1 直线与平面垂直的判定,高中数学必修2,教学目的,1.理解直线与平面垂直的定义;2.掌握直线与平面垂直的判定定理内容及其应用;3.应用直线与平面垂直的判定定理解决问题.教学重点:直线与平面垂直的判定定理内容及其应用.教学难点:直线与平面垂直的判定定理内容及论证过程,直线和平面垂直的判定(1),复习引入:,1.直线和平面的位置关系是什么?,(1)直线在平面内(无数个公共点);(2)直线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点),2.线面平行的判定定理的内容是什么?,3.线面平行的性质定理的内容是什么?,平面外一条直线与此平面内的一条直线平行,则该直线与此平面平
2、行,一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。,引入新课:,在直线和平面相交的位置关系中,有一种相交是很特殊的,我们把它叫做垂直相交,这节课我们重点来探究这种形式的相交。,直线与平面垂直,观察实例,发现新知,旗杆与地面的关系,给人以直线与平面垂直的形象。,观察实例,发现新知,房屋的屋柱与地面的关系,给人以直线与平面垂直的形象。,大桥的桥柱与水面的位置关系,给人以直线与平面垂直的形象。,观察实例,发现新知,实例研探,定义新知:,探究:什么叫做直线和平面垂直呢?当直线与平面垂直时,此直线与平面内的所有直线的关系又怎样呢?,生活中线面垂直的实例:,在阳光下观察直立于地
3、面的旗杆及它在地面的影子,随着时间的变化,尽管影子的位置在移动,但是旗杆所在的直线始终与影子所在的直线垂直(如图),事实上,旗杆AB所在直线与地面内任意一条不过点B的直线也是垂直的。,直线与平面垂直的定义:,如果一条直线l 和一个平面内的任意一条直线都垂直,我们就说直线l 和平面互相垂直.记作:l,l,P,l 叫做的垂线,叫做l 的垂面,l 与的唯一公共点P叫做垂足。,画直线与平面平行时,通常把直线画成与表示平面的平行四边形的一边垂直。,“任何”表示所有(提问:若直线与平面内的无数条直线垂直,则直线垂直与平面吗?如不是,直线与平面的位置关系如何?)直线与平面垂直是直线与平面相交的一种特殊情况,
4、在垂直时,直线与平面的交点叫做垂足.a等价于对任意的直线m,都有am.,三点说明:,利用定义,我们得到了判定线面垂直的最基本方法,同时也得到了线面垂直的最基本的性质.,探究:,提出问题:有没有比较方便可行的方法来判断直线和平面垂直呢?,师生活动:请同学们准备一块三角形的纸片,我们一起来做如图所示的试验:过ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触),问:折痕AD与桌面垂直吗?如何翻折才能保证折痕AD与桌面所在平面垂直?,A,直线与平面垂直的判定定理:,一条直线和一个平面内的两条相交直线都垂直,则这条直线垂直于这个平面.,线线垂直 线面垂直,例题示
5、范,巩固新知,例1、一旗杆高8m,在它的顶点处系两条长10m的绳子,拉紧绳子并把它们的下端固定在地面上的两点(与旗杆脚不在同一条直线上)。如果这两点与旗杆脚距6m,那么旗杆就与地面垂直,为什么?,解:如图,旗杆PO8,两绳子长PAPB10,OAOB6,A,O,B三点不共线,因此A,O,B三点确定平面,因为PO2AO2PA2,PO2BO2PB2,故POOA,POOB又OAOBO,故OP,因此旗杆与地面垂直。,例2、如图,已知ab,a。求证:b。,例题示范,巩固新知,分析:在平面内作两条相交直线,由直线与平面垂直的定义可知,直线a与这两条相交直线是垂直的,又由b平行a,可证b与这两条相交直线也垂直
6、,从而可证直线与平面垂直。,a,b,阅读P66证明过程.,(此定理可看作线面垂直的判定定理二;直接用),巩固练习,1.平行四边形ABCD所在平面a外有一点P,且PA=PB=PC=PD,求证:点P与平行四边形对角线交点O的连线PO垂直于AB、AD.,归纳:,今天这节课,我们学习了直线和平面垂直的定义,这个定义最初用在判定定理的证明上,但用得较多的则是,如果直线l垂直于平面a,那么l就垂直于a内的任何一条直线;对于判定定理,判定线、面垂直,实质是转化成线、线垂直,从中不难发现立体几何问题解决的一般思路。,作业布置:P66探究;P67练习第1题;课下思考:P74 B组2题。,继续!,直线和平面垂直的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 231 直线 平面 垂直 判定
链接地址:https://www.31ppt.com/p-2200398.html