排列组合(平均法)课件.ppt
《排列组合(平均法)课件.ppt》由会员分享,可在线阅读,更多相关《排列组合(平均法)课件.ppt(18页珍藏版)》请在三一办公上搜索。
1、排列组合中的分组分配问题,个学生平均分成3组,有多少种分法?个学生平均分到3个不同的班级,有多少种分法?头痛了吧?分组分配问题是排列组合教学中的一个重点和难点。某些排列组合问题看似非分配问题,实际上可运用分配问题的方法来解决。,一提出分组与分配问题,澄清模糊概念n个不同元素按照某些条件分配给k个不同得对象,称为分配问题,分定向分配和不定向分配两种问题;将n个不同元素按照某些条件分成k组,称为分组问题。分组问题有不平均分组、平均分组、和部分平均分组三种情况。分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的;而后者即使2组元素个数相同,但因对象不同,仍然是可区分的。对于后者必
2、须先分组后排列。,二基本的分组问题例1 六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法?(1)每组两本(均分三堆)(2)一组一本,一组二本,一组三本(3)一组四本,另外两组各一本,分析:(1)分组与顺序无关,是组合问题。分组数是=90(种)这90种分组实际上重复了6次。我们不妨把六本不同的书标上1、2、3、4、5、6六个号码。考察以下两种分法:(1,2)(3,4)(5,6)与(3,4)(1,2)(5,6),由于书是均匀分组的,三组的本数一样,又与顺序无关,所以这两种分法是同一种分法。以上的分组方法实际上加入了组的顺序,因此还应取消分组的顺序,即除以组数的全排列数,所以分法是=1
3、5(种)。(2)先分组,方法是,那么还要不要除以?我们发现,由于每组的书的本数是不一样的,因此不会出现相同的分法,即共有=60(种)分法。(3)分组方法是=30(种)其中有没有重复的分法?我们发现,其中两组的书的本数都是一本,因此这两组有了顺序,而与四本书的那一组,由于书的本数不一样,不可能重复。所以实际分法是=15(种)。,通过以上三个小题的分析,我们可以得出分组问题的一般方法。结论1:一般地,n个不同的元素分成p组,各组内元素数目分别为m,m,m,其中k组内元素数目相等,那么分组方法数是,三基本的分配的问题定向分配问题例2 六本不同的书,分给甲、乙、丙三人,求在下列条件下各有多少种不同的分
4、配方法?(1)甲两本、乙两本、丙两本.(2)甲一本、乙两本、丙三本.(3)甲四本、乙一本、丙一本.分析:由于分配给三人,每人分几本是一定的,属分配问题中的定向分配问题,由分布计数原理不难解出:()=90(种)()=60(种)()=30(种)。,不定向分配问题例3六本不同的书,分给甲、乙、丙三人,求在下列条件下各有多少种不同的分配方法?(1)每人两本(2)一人一本、一人两本、一人三本(3)一人四本、一人一本、一人一本分析:此组题属于分配中的不定向分配问题,是该类题中比较困难的问题。由于分配给三人,同一本书给不同的人是不同的分法,所以是排列问题。实际上可看作“分为三组,再将这三组分给甲、乙、丙三人
5、”,因此只要将分组方法数再乘以,即()=90(种)()=360(种)()=90(种)。,结论2.一般地,如果把不同的元素分配给几个不同对象,并且每个不同对象可接受的元素个数没有限制,那么实际上是先分组后排列的问题,即分组方案数乘以不同对象数的全排列数。,解不定向分配题的一般原则:先分组后排列。,例4 六本不同的书,分给甲、乙、丙三人,每人至少一本,有多少种分法?分析:六本书和甲、乙、丙三人都有“归宿”,即书要分完,人不能空手。因此,考虑先分组,后排列。先分组,六本书怎么分为三组呢?有三类分法(1)每组两本(2)分别为一本、二本、三本(3)两组各一本,另一组四本。所以根据加法原理,分组法是+=9
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 排列组合 平均 课件
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-2153688.html