对策问题五六年级奥数课件.ppt
《对策问题五六年级奥数课件.ppt》由会员分享,可在线阅读,更多相关《对策问题五六年级奥数课件.ppt(20页珍藏版)》请在三一办公上搜索。
1、对策问题,研究这种竞赛策略的数学分支,叫作博弈论,也叫对策论,它是运筹学中的一部分,专题简析:同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的所在的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。哪一方的策略更胜一筹,哪一方就会取得最终的胜利。解决这类问题一般采用逆推法和归纳法。,智取火柴,在数学游戏中有一类取火柴游戏,它有很多种玩法,由于游戏的规则不同,取胜的方法也就
2、不同。但不论哪种玩法,要想取胜,一定离不开用数学思想去推算。,例1 桌子上放着60根火柴,甲、乙二人轮流每次取走13根。规定谁取走最后一根火柴谁获胜。如果双方都采用最佳方法,甲先取,那么谁将获胜?,分析与解:本题采用逆推法分析。获胜方在最后一次取走最后一根;往前逆推,在倒数第二次取时,必须留给对方4根,此时无论对方取1,2或3根,获胜方都可以取走最后一根;再往前逆推,获胜方要想留给对方4根,在倒数第三次取时,必须留给对方8根由此可知,获胜方只要每次留给对方的都是4的倍数根,则必胜。现在桌上有60根火柴,甲先取,不可能留给乙4的倍数根,而甲每次取完后,乙再取都可以留给甲4的倍数根,所以在双方都采
3、用最佳策略的情况下,乙必胜。,在例1中为什么一定要留给对方4的倍数根,而不是5的倍数根或其它倍数根呢?关键在于规定每次只能取13根,134,在两人紧接着的两次取火柴中,后取的总能保证两人取的总数是4。利用这一特点,就能分析出谁采用最佳方法必胜,最佳方法是什么。由此出发,对于例1的各种变化,都能分析出谁能获胜及获胜的方法。,例2 在例1中将“每次取走13根”改为“每次取走16根”,其余不变,情形会怎样?,分析与解:由例1的分析知,只要始终留给对方(1+6=)7的倍数根火柴,就一定获胜。因为60784,所以只要甲第一次取走4根,剩下56根火柴是7的倍数,以后总留给乙7的倍数根火柴,甲必胜。由例2看
4、出,在每次取1n根火柴,取到最后一根火柴者获胜的规定下,谁能做到总给对方留下(1+n)的倍数根火柴,谁将获胜。,例3 将例1中“谁取走最后一根火柴谁获胜”改为“谁取走最后一根火柴谁输”,其余不变,情形又将如何?,解:最后留给对方1根火柴者必胜。按照例1中的逆推的方法分析,只要每次留给对方4的倍数加1根火柴必胜。甲先取,只要第一次取3根,剩下57根(57除以4余1),以后每次都将除以4余1的根数留给乙,甲必胜。由例3看出,在每次取1n根火柴,取到最后一根火柴者为输的规定下,谁能做到总给对方留下(1n)的倍数加1根火柴,谁将获胜。有许多游戏虽然不是取火柴的形式,但游戏取胜的方法及分析思路与取火柴游
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 对策 问题 六年级 课件
链接地址:https://www.31ppt.com/p-2148693.html