磨损及磨损理论ppt课件.ppt
《磨损及磨损理论ppt课件.ppt》由会员分享,可在线阅读,更多相关《磨损及磨损理论ppt课件.ppt(149页珍藏版)》请在三一办公上搜索。
1、摩擦学基础知识磨损及磨损理论,第一节 概 述,任何机器运转时,相互接触的零件之间都将因相对运动而产生摩擦,而磨损正是由于摩擦产生的结果。由于磨损,将造成表层材料的损耗,零件尺寸发生变化,直接影响了零件的使用寿命。从材料学科特别是从材料的工程应用来看,人们更重视研究材料的磨损。据不完全统计,世界能源的1312消耗于摩擦,而机械零件80失效原因是磨损。,轮胎压痕(SEM 5000X),摩擦痕迹(350X),所以磨损是机器最常见、最大量的一种失效方式。据调查,联邦德国在1974年钢铁工业中约有30亿马克花费在维修上,其中直接由于磨损造成的损失占47%,停机修理所造成的损失与磨损直接造成的损失相当,如
2、果再加上后续工序的影响,其经济损失还需加上10%一20%。,1.1磨损研究的重要性,与摩擦相比,磨损要复杂得多。直到目前磨损的机理还不十分清楚,也没有一条简明的定量定律。对大多数机器来说,磨损比摩擦显得更为重要,实际上人们对磨损的理解远远不如摩擦。对机器磨损的预测能力也很差。对于大多数不同系统的材料,在空气中的摩擦系数大小相差不超过20倍,而磨损率之差却很大,如聚乙烯对钢的磨损和钢对钢的磨损之比可相差105倍。磨损似乎比摩擦具有更大的复杂性和敏感性。在具体的工作条件下,影响因素是十分复杂的,它包括工作条件、环境因素、介质因素和润滑条件以及零件材料的成分、组织和工作表面的物理、化学、机械性能等,
3、了解影响因素有利于实现对磨损的控制。,1.2磨损研究的进展,磨损的研究工作开展得较迟,本世纪50年代初期在工业发展国家开始研究“粘着磨损”理论,探讨磨损机理。1953年美国的J.F.Archard 提出了简单的磨损计算公式,1957年苏联的克拉盖尔斯基提出了固体疲劳理论和计算方法,1973年美国的N.P.Suh提出了磨损剥层理论。,20世纪60年代后,由于电子显微镜、光谱仪、能谱仪、俄歇谱仪以及电子衍射仪等测试仪器和放射性同位素示踪技术、铁谱技术等大量的综合的应用,使得磨损研究在磨损力学、机理、失效分析、监测及维修等方面有了较快的发展。把磨损试验机直接装在电子显微镜内进行观察和电视录像,了解磨
4、损的动态过程;研究磨损的表面,次表面及磨屑形貌、成分、组织和性能的变化,以搞清磨损机理,分析和监测磨损过程,从而寻求提高机器寿命的可能途径。,1.3磨损定义:磨损是摩擦副相对运动时,在摩擦的作用下,材料表面物质不断损失或产生残余变形和断裂的现象。表面物质运动主要包括机械运动、化学作用和热作用。(1)机械作用使摩擦表面发生物质损失及摩擦表面变形。(2)化学作用使摩擦表面发生性状的改变。(3)热作用使摩擦的表面发生形状的改变。(4)造成各种磨损的产生其他作用。,定义说明 磨损并不局限于机械作用,由于伴同化学作用而产生的腐蚀磨损;由于界面放电作用而引起物质转移的电火花磨损;以及由于伴同热效应而造成的
5、热磨损等现象都在磨损的范围之内;定义强调磨损是相对运动中所产生的现象,因而,橡胶表面老化、材料腐蚀等非相对运动中的现象不属于磨损研究的范畴;,定义说明,磨损发生在物体工作表面材料上,其它非界面材料的损失或破坏,不包括在磨损范围之内;,磨损是不断损失或破坏的现象,损失包括直接耗失材料和材料的转移(材料从一个表面转移到另一个表面上去),破坏包括产生残余变形,失去表面精度和光泽等。不断损失或破坏则说明磨损过程是连续的、有规律的,而不是偶然的几次。,1.4 磨损的危害:(1)影响机器的质量,减低设备的使用寿命。如齿轮齿面的磨损,破坏了渐开线齿形,传动中导致冲击振动。机床主轴轴承磨损,影响零件的加工精度
6、。(2)降低机器的效率,消耗能量。如柴油机缸套的磨损,导致功率不能充分发挥。(3)减少机器的可靠性,造成不安全的因素。如断齿、钢轨磨损。(4)消耗材料,造成机械材料的大面积报废。,1.5 研究内容:(1)磨损类型及发生条件、特征和变化规律。(2)影响磨损各种因素,包括材料、表面形 态、环境、滑动速度、载荷、温度等。(3)磨损的物理模型、计算及改善措施。(4)磨损的测试技术与实验分析方法。,表面被磨平,实际接触面积不断增大,表面应变硬化,形成氧化膜,磨损速率减小。,斜率就是磨损速率,唯一稳定值;大多数机件在稳定磨损阶段(AB段)服役;磨损性能是根据机件在此阶段 的表现来评价。,随磨损的增长,磨耗
7、增加,表面间隙增大,表面质量恶 化,机件快速失效。,1.6 磨损过程的一般规律:,1、磨损过程分为三个阶段:,非典型磨损曲线,2.磨损特性曲线,典型浴盆曲线典型浴盆曲线,1.7 磨损类型,1、磨损类型,其他磨损类型,2、表面破坏方式及特征,磨损表面有粘着痕迹,铁金属磨屑被氧化成红棕色氧化物,通常作为磨料加剧磨损。,表面存在明显粘着痕迹和材料转移,有较大粘着坑块,在高速重载下,大量摩擦热使表面焊合,撕脱后留下片片粘着坑。,黏着坑密集,材料转移严重,摩擦副大量焊合,磨损急剧增加,摩擦副相对运动受到阻碍或停止。,破坏首先发生在次表层,位错塞积,裂纹成核,并向表面扩展,最后材料以薄片状剥落,形成片状磨
8、屑。,材料以极细粒状脱落,出现许多“豆斑”状凹坑。,低倍可观察到条条划痕,由磨粒切削或犁沟造成。,宏观上光滑,高倍才能观察到细小的磨粒滑痕。,存在压坑,间或有粗短划痕,由磨粒冲击表面造成,3.表面破坏方式与机理对应关系,1.8磨损的评定,磨损时零件表面的损坏是材料表面单个微观体积损坏的总和。目前对磨损评定方法还没有统一的标准。这里主要介绍三种方法:磨损量、耐磨性和磨损比。,(1)磨损量 评定材料磨损的三个基本磨损量是长度磨损量Wl、体积磨损量Wv和重量磨损量Ww。长度磨损量是指磨损过程中零件表面尺寸的改变量,这在实际设备的磨损监测中经常使用。体积磨损量和重量磨损量是指磨损过程中零件或试样的体积
9、或重量的改变量。在所有的情况下,磨损都是时间的函数,因此,用磨损率Wt来表示时间的特性。其它指标还有磨损强度W(单位摩擦距离的磨损量,有人也把它称为磨损率),和磨损速度WT(是指机器完成一单位工作量的磨损量)。,(2)耐磨性,材料的耐磨性是指在一定工作条件下材料耐磨损的特性。材料耐磨性分为相对耐磨性和绝对耐磨性两种。材料的相对耐磨性是指两种材料A与B在相同的外部条件下磨损量的比值,其中材料之一的A是标准(或参考)试样。AWA/WB,磨损量WA和WB一般用体积磨损量,特殊情况下可使用其它磨损量。耐磨性通常也用绝对指标W-1或W-1表示,即用磨损量或磨损率的倒数表示。W-1=1/W,W-1=1/W
10、 耐磨性使用最多的是体积磨损量的倒数,也可用体积磨损率、体积磨损强度或体积磨损速度的倒数表示。绝对耐磨性和相对耐磨性的关系是AWAW1,(3)磨损比,冲蚀磨损过程中常用磨损比(也有称磨损率)来度量磨损。,它必须在稳态磨损过程中测量,在其它磨损阶段中所测量的磨损比将有较大的差别。不论是磨损量、耐磨性和磨损比,它们都是在一定实验条件或工况下的相对指标,不同实验条件或工况下的数据是不可比较的。,第二节 粘着磨损,1 定义:当摩擦副相对滑动时,由于粘着效应所形成结点发生剪切断裂,被剪切的材料或脱落成磨屑,或由一个表面迁移到另一个表面,此类磨损称为粘着磨损。,2 粘着磨损机理:当摩擦副接触时,接触首先发
11、生在少数几个独立的微凸体上。因此,在一定的法向载荷作用下,微凸体的局部压力就可能超过材料的屈服压力而发生塑性变形,继而使两摩擦表面产生粘着(焊接)。当微凸体相对运动时,相互焊接的微凸体发生剪切、断裂。脱落的材料或成为磨屑,或发生转移。如撕断处在焊接的部位,不发生物质的转移。如撕断处不在焊接的部位,则发生物质的转移。粘着-剪断-转移-再粘着循环不断进行,构成粘着磨损过程。,粘着磨损,(1)轻微磨损:粘着结合强度比摩擦副基体金属抗剪切强度都低,剪切破坏发生在粘着结合面上,表面转移的材料较轻微。此时虽然摩擦系数增大,但是磨损却很小,材料迁移也不显著。通常在金属表面具有氧化膜、硫化膜或其他涂层时发生轻
12、微粘着摩损。(2)涂抹:粘着结合强度大于较软金属抗剪切强度,小于较硬金属抗剪切强度。剪切破坏发生在离粘着结合面不远的较软金属浅层内,软金属涂抹在硬金属表面。这种模式的摩擦系数与轻微磨损差不多,但磨损程度加剧。,粘着磨损又称擦伤或咬合磨损。出现条件:相对滑动速度小,接触面氧化膜脆弱,润滑条件差,接触应力大。根据粘着点的强度和破坏位置不同,粘着磨损一下五种不同的形式(五类典型粘着磨损):,(3)擦伤:粘着结合强度比两基本金属的抗剪强度都高。剪切发生在较软金属的亚表层内或硬金属的亚表层内,转移到硬金属上的粘着物使软表面出现细而浅划痕,硬金属表面也偶有划伤。(4)划伤:粘着结合强度比两基体金属的抗剪强
13、度都高,切应力高于粘着结合强度。剪切破坏发生在摩擦副金属较深处,表面呈现宽而深的划痕。此时表面将沿着滑动方向呈现明显的撕脱,出现严重磨损。如果滑动继续进行,粘着范围将很快增大,摩擦产生的热量使表面温度剧增,极易出现局部熔焊,使摩擦副之间咬死而不能相对滑动。这种破坏性很强的磨损形式,应力求避免。,(5)咬死:粘着结合强度比两基体金属的抗剪强度都高,粘着区域大,切应力低于粘着结合强度。摩擦副之间发生严重粘着而不能相对运动。,Archard(1953年)提出的粘着磨损计算模型见下图。选取摩擦副之间的粘着结点面积为以a为半径的圆,每一个粘着结点的接触面积为a2假设摩擦副的一方为较硬材料,摩擦副另一方为
14、较软材料;法向载荷W由n个半径为a的相同微凸体承受。,3.简单粘着磨损计算(艾查德 Archard模型):,当材料产生塑性变形时,法向载荷W与较软材料的屈服极限y之间的关系:,当摩擦副产生相对滑动,且滑动时每个微凸体上产生的磨屑为半球形。其体积为(2/3)a3,则单位滑动距离的总磨损量为:,(1),(2),式(3)是假设了各个微凸体在接触时均产生一个磨粒而导出。如果考虑到微凸体中产生磨粒的概率数K和滑动距离L,则接触表面的粘着磨损量表达式为:,(4),由(4)式可得粘着磨损的三个定律:材料磨损量与滑动距离成正比:适用于多种条件材料磨损量与法向载荷成正比:适用于有限载荷范围材料磨损量与较软材料的
15、屈服极限y(或硬度H)成反比,对于弹性材料,yH/3,H为布氏硬度值,则式(4)可变为:,式中K为粘着磨损系数,由(1)和(2)式,可得:,(3),右图为钢制销钉在钢制圆盘上滑动摩擦时的结果。图中示出钢的磨损系数随表观压力的变化曲线。纵坐标为K/H,代表单位载荷、单位滑动距离的磨损量,横坐标代表平均接触压力。,当压力值小于片H/3时,磨损率小而且保持不变(即K保持常数);但当压力值超过H/3时,磨损量急剧增大(K值急剧增大),这意味着在这样高的载荷作用下会发生大面积的粘着焊连。对其他金属也有类似的情况,只是K开始增加时的平均压力值通常比H/3稍低而已。在压力值为H/3作用下,各个微凸体上的塑性
16、变形区开始发生相互影响。当压力值增加到H/3以上时,整个表面变成塑性流动区,因而实际接触面积不再与载荷成正比,出现剧烈的粘着磨损,摩擦表面严重破坏。,由于式中的K代表微凸体中产生磨粒的概率,即粘着磨损系数因此,K值必须按不同的滑动材料组合和不同的摩擦条件求得。右表给出了不同工况和摩擦副配对时的磨损系数K值。,(1)摩擦副材料:a:材料性能:脆性材料比塑性材料的抗粘着能力高。*塑性材料粘着结点的破坏以塑性流动为主,发生 在表层深处,磨损颗粒大。*脆性材料粘着结点的破坏主要剥落,损伤深度较浅,磨损颗粒较小,容易脱落,不堆积于表面。*根据强度理论:脆性材料的破坏由正应力引起,塑性材料的破坏决定于切应
17、力。表面接触中的最大正应力作用在表面,最大切应力离表面有一定深度,所以材料塑性越高,粘着磨损越严重。,4.粘着磨损的影响因素,b:材料的互溶性:?相同金属或互溶性大的材料摩擦副易发生粘着磨损。?异种金属或互溶性小的材料摩擦副抗粘着磨损能力较高。?金属与非金属摩擦副抗粘着磨损能力高于异体金属摩擦副。一般,冶金相溶性好的金属摩擦副,其摩擦相溶性就差,相同金属摩擦副,摩擦互溶性最差。,c.材料的组织结构和表面处理 金属的组织结构对粘着磨损也有影响,多相金属比单相金属的抗粘着磨损能力高;金属中化合物相比单相固溶体的粘着倾向小。通过表面处理技术在金属表面生成硫化物、磷化物或氯化物等薄膜可以减少粘着效应,
18、同时表面膜限制了破坏深度,提高抗粘着磨损的能力。d.元素周期表中的B族元素,如锗、银、镉、铟、锡、锑、铊、铅、铋与铁的冶金相容性差,抗粘着磨损性能好。而铁与A族元素组成的摩擦副粘着倾向大。,e.材料的硬度 硬度高的金属比硬度低的金属抗粘着能力强,因为表面接触应力大于较软金属硬度的1/3时,很多金属将由轻微磨损转变为严重的粘着磨损。,载荷的影响 粘着磨损一般随法向载荷增加到某一临界值后而急剧增加,如图所示,K/H的比值实际上是材料硬度与许用压力的关系。当载荷值超过材料硬度值的1/3时,磨损急剧增加,严重时咬死。因此设计中选择的许用压力必须低于材料硬度值的1/3。,速度的影响 在压力一定的情况下,
19、粘着磨损随滑动速度的增加而增加,在达到某一极大值后,又随着滑动速度的增加而减少。上图为摩擦速度不太高的范围内,钢铁材料的磨损随摩擦速度、接触压力的变化规律。,随着滑动速度的变化,磨损类型由一种形式转变为另一种形式。如图(a)所示,当摩擦速度很低时,主要是氧化磨损,出现Fe2O3的磨屑,磨损量很小。随速度的增大,氧化膜破裂,金属的直接接触,转化为粘着磨损,磨损量显著增大。滑动速度再高,摩擦温度上升,有利于氧化膜形成,又转为氧化磨损,磨屑为Fe3O4,磨损量又减小。如摩擦速度再增大,将再次转化为粘着磨损,磨损量又开始增加。,图(b)是滑动速度保持一定而改变载荷所得到的钢对钢磨损实验结果。载荷小产生
20、氧化磨损,磨屑主要是Fe2O3;当载荷达到W0后,磨屑是FeO、Fe2O3 和Fe3O4的混合物。载荷超过Wc以后,便转入危害性的粘着磨损。,表面温度的影响 表层温度特性对于摩擦表面的相互作用和破坏影响很大。表面温度升高可使润滑膜失效,使材料硬度下降,摩擦表面容易产生粘着磨损。,如图为温度对胶合磨损的影响,可以看出,当表面温度达到临界值(约80)时,磨损量和摩擦系数都急剧增加。影响温度特性的主要因素是表面压力p和滑动速度v,其中速度的影响更大,因此限制pv值是减少粘着磨损和防止胶合发生的有效方法。,润滑油、润滑脂的影响 在润滑油、润滑脂中加人油性或极压添加剂能提高润滑油膜吸附能力及油膜强度,能
21、成倍地提高抗粘着磨损能力。油性添加剂是由极性非常强的分子组成,在常温条件下,吸附在金属表面上形成边界润滑膜,防止金属表面的直接接触,保持摩擦面的良好润滑状态。极压添加剂是在高温条件下,分解出活性元素与金属表面起化学反应,生成一种低剪切强度的金属化合物薄膜,防止金属因干摩擦或边界摩擦条件下而引起的粘着现象。,1.磨损量与滑动距离成正比:适用于多种条件。2.磨损量与载荷成正比:适用于有限载荷范围。3.磨损量与较软材料的硬度或屈服极限成正比:*实际上,只有相同的金属材料组成摩擦副时,才 能按硬度估计粘着磨损,合金或不同材料的摩擦副,硬度不能反映粘着系数、粘着磨损或粘着引起的咬死等情况。,三条粘着磨损
22、规律:,第三节 磨粒磨损,1 定义:外界硬颗粒或者对磨表面上的硬突起物或粗糙峰在摩擦过程中引起表面材料脱落的现象,称为磨粒磨损。磨粒是摩擦表面互相摩擦产生或由介质带入摩擦表面。,磨料磨损根据不同的分类方式可分为不同的种类型:,例如:掘土机铲齿、犁耙、球磨机衬板等的磨损都是典型的磨粒磨损。机床导轨面由于切屑的存在也会引起磨粒磨损。水轮机叶片和船舶螺旋桨等与含泥沙的水之间的侵蚀磨损也属于磨粒磨损。2 磨料磨损分类及其磨损特征:,3 磨粒磨损机理,(1)微观切削:磨粒作用在零件材料表面上的力,可分为法向力和切向力。法向力将磨粒压入摩擦表面,如硬度试验一样,在表面上形成压痕。切向力使磨粒向前推进,当磨
23、粒的形状与位向适当时,磨粒就象刀具一样,对表面进行剪切、犁皱和切削,产生槽状磨痕.不过这种切削的宽度和深度都很小,因此产生的切屑也很小。,磨粒磨损是最普遍的磨损形式。据统计,在生产中因磨粒磨损所造成的损失占整个磨损损失的一半左右,因而研究磨粒磨损有着重要的意义。关于材料磨粒磨损主要有以下几个假设:,(1)微观切削 虽然切削时“刀具”,即一般的磨粒,大多具有负前角的特征,切屑变形也较大些,但在显微镜下观察,这些微观切屑仍具有机加工中切屑的特征。这些切屑一般长宽比较大,切屑的一面较光滑,而另一面则有滑动的台阶,有些还有卷曲现象。微观切削是材料磨粒磨损的主要机理。在三体磨料磨损中也会发生微观切削作用
24、。,但是,磨粒和表面接触时发生切削的概率不是很大,虽然在某种条件下切削磨损量占总磨损量的比例很大。但当磨粒形状较圆钝时,或在犁削过程磨粒的棱角而不是棱边对着运动方向时,或磨粒和被磨材料表面间的夹角(迎角)太小时,或表面材料塑性很高时,往往磨粒在表面滑过后,只犁出一条沟来,把材料推向两边或前面,而不能切削出切屑来,特别是松散的自由磨粒,大概有90以上的磨粒发生滚动接触,只能压出印痕来,而形成犁沟的概率只不过10,这样切削的可能性就更少了。,还有一种情况,如冲击角较大的冲蚀磨损以及球磨机磨球对磨料冲击时,往往在表面上形成压坑和在压坑四周被挤压出唇状凸缘,只能使表面发生塑性变形而切削的分量就很少。,
25、(1)微观切削,(2)挤压剥落:磨料在载荷作用下压入摩擦表面而产生压痕,将塑性材料的表面挤压出层状或鳞片状剥落碎屑。,当磨粒滑过表面时,除了切削外,大部分磨粒只把材料推向前面或两旁,这些材料受到很大的塑性形变,却没有脱离母体,同时在沟底及沟槽附近的材料也受到较大的变形。犁沟时一般可能有一部分材料被切削而形成切屑,一部分则末被切削而仅有塑变,披推向两侧和前缘。若犁沟时全部的沟槽体积都被推向两旁和前缘而不产生任何一次切屑时,则称之为犁皱。犁沟或犁皱后堆积在两旁和前缘的材料以及沟槽中的材料,当受到随后的磨料作用时,可能把堆积起的材料重新压平,也可能使已变形的沟底材料遭到再一次的犁皱变形,如此反复塑变
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 磨损 理论 ppt 课件
链接地址:https://www.31ppt.com/p-2131955.html