极限的概念PPT课件.ppt
《极限的概念PPT课件.ppt》由会员分享,可在线阅读,更多相关《极限的概念PPT课件.ppt(42页珍藏版)》请在三一办公上搜索。
1、学习要求,1.理解极限的概念;熟练掌握基本初等函数在自变量的某个过程中的极限。2.掌握函数在一点极限存在的充要条件,会求分段函数在分段点的极限。,1.2 极 限,割圆求周长,思路:利用圆的内接正多边形近似替代圆的周长 随着正多边形边数的增多,近似程度会越好。,问题:若正多边形边数n无限增大,两者之间的关系如何?,我国古代数学家刘徽用割圆术,初步解决了这个问题。,1、求圆的周长问题,一、极限概念的引入,割圆术:,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,刘徽,割圆术:,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,刘徽,割圆术:,“割之弥细
2、,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,刘徽,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,割圆术:,刘徽,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,割圆术:,刘徽,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,割圆术:,刘徽,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,割圆术:,刘徽,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,割圆术:,刘徽,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,割圆术:,刘徽,“割
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 极限 概念 PPT 课件

链接地址:https://www.31ppt.com/p-2123745.html