材料力学(1)第三章ppt课件.ppt
《材料力学(1)第三章ppt课件.ppt》由会员分享,可在线阅读,更多相关《材料力学(1)第三章ppt课件.ppt(93页珍藏版)》请在三一办公上搜索。
1、1,第三章 扭转,2,3-1 概 述,3,E,扳手,4,5,6,变形特点:.相邻横截面绕杆的轴线相对转动;.杆表面的纵向线变成螺旋线;.实际构件在工作时除发生扭转变形外,还伴随有弯曲或拉、压等变形。,外力与变形:等截面直杆在与杆的轴线垂直平面内的 外力偶Me作用下发生扭转。,第三章 扭转,薄壁杆件也可以由其它外力引起扭转。,7,扭转角:任意两横截面间相对转过的角度。,扭转的几个概念:,8,本章研究杆件发生除扭转变形外,其它变形可忽略,并且以圆截面(实心圆截面或空心圆截面)杆为主要研究对象,所研究的问题仅限于杆在线弹性范围内工作的情况。,第三章 扭转,9,3-2 薄壁圆筒的扭转,薄壁圆筒通常指
2、的圆筒,当其两端面上作用有外力偶矩时,任一横截面上的内力偶矩扭矩(torque),第三章 扭转,10,薄壁圆筒的扭转实验,第三章 扭转,11,一、薄壁圆筒横截面上各点处切应力的变化规律,第三章 扭转,1、假设:(1)横截面保持为形状、大小均未改变的平面,即横截面 如同刚性平面一样;(2)相邻横截面只是绕圆筒轴线相对转动,横截面之间 的距离未变。,12,2、横截面上的应力与内力的关系:由截面上的应力与微面积dA之乘积的合成对于截面形心o的矩等于截面上的扭矩可知,(1)横截面上的应力只能是切应力。且是与圆周相切的切应 力,圆周上所有点处的切应力相同;(2)对于薄壁圆筒,可认为切应力沿壁厚均匀分布;
3、(3)横截面上无正应力。,第三章 扭转,t,13,二、薄壁圆筒横截面上切应力的计算公式:,由 根据应力分布可知,引进,上式亦可写作,,于是有,第三章 扭转,t,14,三、剪切胡克定律(Hookes law in shear),(1)设上述薄壁圆筒表面上每个格子的直角均改变了g,这 种直角改变量称为切应变g。该圆筒两个端面之间绕圆筒轴线相对转动了j角,这种 角位移称为相对扭转角j。在认为切应力沿壁厚均匀分布的情况下,切应变也是 不沿壁厚变化的,故有,此处r0为薄壁圆筒的 平均半径。,第三章 扭转,15,薄壁圆筒的扭转实验表明:当横截面上切应力t 不超过材料的剪切比例极限tp时,外力偶矩Me(数值
4、上等于扭矩T)与相对扭转角j 成线性正比例关系,从而可知t 与g 亦成线性正比关系,即:,这就是材料的剪切胡克定律,式中的比例系数G称为材料的切变模量(shear modulus)。钢材的切变模量的约值为:G=80GPa,第三章 扭转,16,3-3 传动轴的外力偶矩 扭矩及扭矩图,一、传动轴的外力偶矩,当传动轴稳定转动时,作用于某一轮上的外力偶Me在t 秒钟内所作功等于外力偶之矩Me乘以轮在t秒钟内的转角a。,第三章 扭转,17,外力偶Me每秒钟所作功,即该轮所传递的功率:,若已知传动轴的转速n(亦即传动轴上每个轮的转速)和主动轮或从动轮所传递的功率P,则作用于每一轮上的外力偶矩:,第三章 扭
5、转,18,主动轮上的外力偶其转向与传动轴的转动方向相同,而从动轮上的外力偶的转向与传动轴的转动方向相反。,第三章 扭转,19,二、扭矩及扭矩图,传动轴横截面上的扭矩T 可利用截面法来计算。,第三章 扭转,T=Me,20,扭矩正负号规定:可用右手螺旋定则来判断,即右手四指内 屈,与扭矩转向相同,则拇指的指向表示 扭矩矢的方向,若扭矩矢方向与截面外法 线相同,规定扭矩为正,反之为负。,第三章 扭转,21,例题3-1 一传动轴如图,转速;主动轮输入的功率P1=500 kW,三个从动轮输出的功率分别为:P2=150 kW,P3=150 kW,P4=200 kW。试作轴的扭矩图。,第三章 扭转,22,解
6、:1.计算作用在各轮上的外力偶矩,第三章 扭转,23,2.计算各段的扭矩,BC段内:,AD段内:,第三章 扭转,注意这个扭矩是假定为负的,24,3.作扭矩图,由扭矩图可见,传动轴的最大扭矩Tmax在CA段内,其值为9.56 kNm。,第三章 扭转,25,例题3.2 图示圆轴中,各轮上的转矩分别为mA4kNm,mB10kNm,mC6kN.m,试求11截面和22截面上的扭矩,并画扭矩图。,6KNm,4KNm,26,3-4 等直圆杆扭转时的应力强度条件,小变形条件下,等直圆杆扭转时横截面上只有切应力。下面是其公式的推导。,问题提出:横截面应力大小、方向、分布均未知,仅知合成扭矩T.分析方法:从几何、
7、物理、静力学三方面着手。,一、横截面上的应力,27,实观表面变形情况,推断,横截面的变形情况,(几何方面),横截面上应变变化规律,横截面上应力变化规律,应力-应变关系,(物理方面),内力与应力的关系,横截面上应力的计算公式,(静力学方面),第三章 扭转,合理假设,28,1.表面变形情况及假设 圆周线:相邻圆周线绕杆的轴线相对转动,但大小和形状 未变,小变形情况下间距也未变;(b)纵向线:纵向线倾斜了一个角度g。(c)平面假设:等直圆杆受扭转时横截面如同刚性平面绕杆的 轴线转动,小变形情况下相邻横截面的间距不变。(d)推论:类同薄壁圆筒,杆横截面上只有切应力且垂直于半径,(一)、几何方面,第三章
8、 扭转,29,2.横截面上一点处的切应变随点的位置的变化规律:,即:,第三章 扭转,30,式中 相对扭转角j 沿杆长的变化率,常用j 来表示,对于给定的横截面为常量。,结论:在横截面的同一半径 r 的圆周上各点处的切应变gr 均相同;gr 与r 成正比,且发生在与半径垂直的平面内。,第三章 扭转,31,(二)物理方面,由剪切胡克定律 t=Gg 知,第三章 扭转,结论:在横截面的同一半径为 r 的圆周上,各点处的切应力tr 值均相同,其值 与r 成正比,其方向垂直于半径。,32,(三)静力学方面,其中:称为横截面的极惯性矩Ip,Ip是横截面的几何性质,单位m4。,从而得等直圆杆在线弹性范围内扭转
9、时,横截面上任一点处切应力计算公式:,以 代入上式得:,第三章 扭转,又,33,式中Wp称为扭转截面系数,也是截面几何性质,其单位为 m3。,横截面周边上各点处(r=r)的最大切应力为:,第三章 扭转,34,实心圆截面:,圆截面的极惯性矩Ip和扭转截面系数Wp的推导过程:,第三章 扭转,35,空心圆截面:,第三章 扭转,36,例题1:由两种不同材料组成的圆轴,里层和外层材料的切变模量分别为G1和G2,且G1=2G2。圆轴尺寸如图所示。圆轴受扭时,里、外层之间无相对滑动。关于横截面上的切应力分布,有图中(A)、(B)、(C)、(D)所示的四种结论,请判断哪一种是正确的。,二者交界处的切应力,外层
10、在二者交界处的切应变不为零,剪切胡克定律,提示:在里、外层交界处二者具有相同的切应变,正确答案是(C),37,解:圆轴受扭时,里、外层之间无相对滑动,这表明二者形成一个整体,同时产生扭转变形。根据平面假定,二者组成的组合截面,在轴受扭后依然保持平面,即其直径保持为直线,但要相当于原来的位置转过一角度。因此,在里、外层交界处二者具有相同的切应变。由于内层(实心轴)材料的剪切弹性模量大于外层(圆环截面)的剪切弹性模量(G1=2G2),所以内层在二者交界处的切应力一定大于外层在二者交界处的切应力。据此,答案(A)和(B)都是不正确的。在答案(D)中,外层在二者交界处的切应力等于零,这也是不正确的,因
11、为外层在二者交界处的切应变不为零,根据剪切胡克定律,切应力也不可能等于零。根据以上分析,正确答案是(C),38,通过前面分析可知,等值圆杆扭转时横截面上周边各点的切应力最大,为更全面的了解一点的应力情况,在此进一步讨论这些点处斜截面上的应力。1、单元体、切应力互等定理 以横截面、径向截面以及与表面平行的面(切向截面)从受扭的薄壁圆筒或等直圆杆内任一点处截取一微小的正六面体单元体如图所示,二、斜截面上的应力,第三章 扭转,(假定此微元体的前后面与表面平行)。,39,可得:,由单元体的平衡条件Fx=0 和Mz=0 知单元体的上、下两个平面(即杆的径向截面上)必有大小相等、指向相反的一对力tdxdz
12、并组成其矩为(tdxdz)dy 力偶。,第三章 扭转,由,t=t,40,定理意义:单元体的两个相互垂直的面上,与该两个面的交线垂直的切应力t 和t 数值相等,且均指向(或背离)该两个面的交线切应力互等定理。,第三章 扭转,t=t,切应力互等定理:,公式适用范围:该定理具有普遍意义,也适用于横截面上有 正应力的情况。,纯剪切应力状态:指单元体在其两相对互相垂直的平面上只 有切应力无正应力的状态。如薄壁圆筒和 等直杆扭转时,每个点都处于纯剪切应力状态。,41,例题2:试根据切应力互等定理,判断图中所示的各单元体上的 切应力是否正确。,42,因单元体前、后两面没有无任何应力,可将其改用平面图表示,如
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 材料力学 第三 ppt 课件
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-2123581.html