第二章 废水生物处理基本原理.docx
《第二章 废水生物处理基本原理.docx》由会员分享,可在线阅读,更多相关《第二章 废水生物处理基本原理.docx(13页珍藏版)》请在三一办公上搜索。
1、第二章 废水生物处理基本原理第一节 废水好氧生物处理原理一、好氧生物处理的基本生物过程所谓“好氧”:是指这类生物必须在有分子态氧气(O2)的存在下,才能进行正常的生理生化反应,主要包括大部分微生物、动物以及我们人类;所谓“厌氧”:是能在无分子态氧存在的条件下,能进行正常的生理生化反应的生物,如厌氧细菌、酵母菌等。好氧生物处理过程的生化反应方程式: 分解反应(又称氧化反应、异化代谢、分解代谢) 异氧微生物 CHONS + O2 CO2 + H2O + NH3 + SO42- +能量(有机物的组成元素) 合成反应(也称合成代谢、同化作用) C、H、O、N、S + 能量 C5H7NO2微生物 内源呼
2、吸(也称细胞物质的自身氧化) C5H7NO2 + O2 CO2 + H2O + NH3 + SO42- +能量在正常情况下,各类微生物细胞物质的成分是相对稳定的,一般可用下列实验式来表示:细菌:C5H7NO2;真菌:C16H17NO6;藻类:C5H8NO2;原生动物:C7H14NO3分解与合成的相互关系:1)二者不可分,而是相互依赖的;a、分解过程为合成提供能量和前物,而合成则给分解提供物质基础;b、分解过程是一个产能过程,合成过程则是一个耗能过程。2)对有机物的去除,二者都有重要贡献;3)合成量的大小,对后续污泥的处理有直接影响(污泥的处理费用一般可以占整个城市污水处理厂的4050%)。不同
3、形式的有机物被生物降解的历程也不同:一方面:结构简单、小分子、可溶性物质,直接进入细胞壁;结构复杂、大分子、胶体状或颗粒状的物质,则首先被微生物吸附,随后在胞外酶的作用下被水解液化成小分子有机物,再进入细胞内。另一方面:有机物的化学结构不同,其降解过程也会不同,如:糖类;脂类;蛋白质二、影响好氧生物处理的主要因素 溶解氧(DO): 约12mg/l; 水温:是重要因素之一,在一定范围内,随着温度的升高,生化反应的速率加快,增殖速率也加快;细胞的组成物如蛋白质、核酸等对温度很敏感,温度突升或降并超过一定限度时,会有不可逆的破坏;最适宜温度 1530C; 40C 或 10C后,会有不利影响。 营养物
4、质:细胞组成中,C、H、O、N约占9097%;其余310%为无机元素,主要的是P;生活污水一般不需再投加营养物质;而某些工业废水则需要,一般对于好氧生物处理工艺,应按BOD : N : P = 100 : 5 : 1 投加N和P;其它无机营养元素:K、Mg、Ca、S、Na等;微量元素: Fe、Cu、Mn、Mo、Si、硼等; pH值:一般好氧微生物的最适宜pH在6.58.5之间;pH 4.5时,真菌将占优势,引起污泥膨胀;另一方面,微生物的活动也会影响混合液的pH值。 有毒物质(抑制物质):重金属;氰化物;H2S;卤族元素及其化合物;酚、醇、醛等; 有机负荷率:污水中的有机物本来是微生物的食物,
5、但太多时,也会不利于微生物; 氧化还原电位:好氧细菌:+300 400 mV, 至少要求大于+100 mV;厌氧细菌:要求小于+100 mV,对于严格厌氧细菌,则-100 mV,甚至-300 mV。第二节 废水厌氧生物处理原理废水厌氧生物处理在早期又被称为厌氧消化、厌氧发酵;是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH4和CO2的过程。一、厌氧生物处理中的基本生物过程阶段性理论1、两阶段理论:20世纪3060年代,被普遍接受的是“两阶段理论”图1厌氧反应的两阶段理论图示内源呼吸产物碱性发酵阶段酸性发酵阶段水解胞外酶胞内酶产甲烷菌胞内酶产酸菌不溶性有机物可溶性有
6、机物细菌细 胞脂肪酸、醇类、H2、CO2其它产物细菌细胞CO2、CH4第一阶段:发酵阶段,又称产酸阶段或酸性发酵阶段;主要功能是水解和酸化,主要产物是脂肪酸、醇类、CO2和H2等;主要参与反应的微生物统称为发酵细菌或产酸细菌;这些微生物的特点是:1)生长速率快,2)对环境条件的适应性(温度、pH等)强。第二阶段:产甲烷阶段,又称碱性发酵阶段;是指产甲烷菌利用前一阶段的产物,并将其转化为CH4和CO2;主要参与反应的微生物被统称为产甲烷菌(Methane producing bacteria);产甲烷细菌的主要特点是:1)生长速率慢,世代时间长;2)对环境条件(温度、pH、抑制物等)非常敏感,要
7、求苛刻。2、三阶段理论对厌氧微生物学的深入研究后,发现将厌氧消化过程简单地划分为上述两个过程,不能真实反映厌氧反应过程的本质;厌氧微生物学的研究表明,产甲烷菌是一类十分特别的古细菌(Archea),除了在分类学和其特殊的学报结构外,其最主要的特点是:产甲烷细菌只能利用一些简单有机物作为基质,其中主要是一些简单的一碳物质如甲酸、甲醇、甲基胺类以及H2/CO2等,两碳物质中只有乙酸,而不能利用其它含两碳或以上的脂肪酸和甲醇以外的醇类;上世纪70年代,Bryant发现原来认为是一种被称为“奥氏产甲烷菌”的细菌,实际上是由两种细菌共同组成的,一种细菌首先把乙醇氧化为乙酸和H2(一种产氢产乙酸细菌),另
8、一种细菌则利用H2和CO2产生CH4(一种真正意义上的产甲烷细菌嗜氢产甲烷细菌);因而,Bryant提出了厌氧消化过程的“三阶段理论”:说明:1)I、II、III为三阶段理论,I、II、III、 IV为四类群理论; 2)所产生的细胞物质未表示在图中III发酵性细菌脂肪酸、醇类产氢产乙酸菌II同型产乙酸菌IV有机物乙酸H2+CO2CH4I产甲烷菌图2厌氧反应的三阶段理论和四类群理论水解、发酵阶段:产氢产乙酸阶段:产氢产乙酸菌,将丙酸、丁酸等脂肪酸和乙醇等转化为乙酸、H2/CO2;产甲烷阶段:产甲烷菌利用乙酸和H2、CO2产生CH4;一般认为,在厌氧生物处理过程中约有70%的CH4产自乙酸的分解,
9、其余的则产自H2和CO2。3、四阶段理论(四菌群学说):几乎与Bryant提出“三阶段理论”的同时,又有人提出了厌氧消化过程的“四菌群学说”:实际上,是在上述三阶段理论的基础上,增加了一类细菌同型产乙酸菌,其主要功能是可以将产氢产乙酸细菌产生的H2/CO2合成为乙酸。但研究表明,实际上这一部分由H2/CO2合成而来的乙酸的量较少,只占厌氧体系中总乙酸量的5%左右。总体来说,“三阶段理论”、“四阶段理论”是目前公认的对厌氧生物处理过程较全面和较准确的描述。4、 多阶段理论 但是,当利用厌氧生物处理工艺处理含有复杂有机物的时候,在厌氧反应器中发生的反应会远比上述“三阶段理论”、“四阶段理论”中所描
10、述的反应过程复杂,可以参见“厌氧复杂体系示意图”。二、厌氧消化过程中的主要微生物 主要介绍其中的发酵细菌(产酸细菌)、产氢产乙酸菌、产甲烷菌等。1、发酵细菌(产酸细菌):发酵产酸细菌的主要功能有两种: 水解在胞外酶的作用下,将不溶性有机物水解成可溶性有机物; 酸化将可溶性大分子有机物转化为脂肪酸、醇类等;主要的发酵产酸细菌:梭菌属、拟杆菌属、丁酸弧菌属、双岐杆菌属等;水解过程较缓慢,并受多种因素影响(pH、SRT、有机物种类等),有时回成为厌氧反应的限速步骤;产酸反应的速率较快;大多数是厌氧菌,也有大量是兼性厌氧菌;可以按功能来分:纤维素分解菌、半纤维素分解菌、淀粉分解菌、蛋白质分解菌、脂肪分
11、解菌等。2、产氢产乙酸菌:产氢产乙酸细菌的主要功能是将各种高级脂肪酸和醇类氧化分解为乙酸和H2;为产甲烷细菌提供合适的基质,在厌氧系统中常常与产甲烷细菌处于共生互营关系。主要的产氢产乙酸反应有:乙醇: 丙酸: 丁酸: 注意:上述反应只有在乙酸浓度很低、系统中氢分压也很低时才能顺利进行,因此产氢产乙酸反应的顺利进行,常常需要后续产甲烷反应能及时将其主要的两种产物乙酸和H2消耗掉。主要的产氢产乙酸细菌多为:互营单胞菌属、互营杆菌属、梭菌属、暗杆菌属等;多数是严格厌氧菌或兼性厌氧菌。3、产甲烷菌20世纪60年代Hungate开创了严格厌氧微生物培养技术之后,对产甲烷细菌的研究才得以广泛进行;产甲烷细
12、菌的主要功能是将产氢产乙酸菌的产物乙酸和H2/CO2转化为CH4和CO2,使厌氧消化过程得以顺利进行;主要可分为两大类:乙酸营养型和H2营养型产甲烷菌,或称为嗜乙酸产甲烷细菌和嗜氢产甲烷细菌;一般来说,在自然界中乙酸营养型产甲烷菌的种类较少,只有Methanosarcina(产甲烷八叠球菌)和Methanothrix(产甲烷丝状菌),但这两种产甲烷细菌在厌氧反应器中居多,特别是后者,因为在厌氧反应器中乙酸是主要的产甲烷基质,一般来说有70%左右的甲烷是来自乙酸的氧化分解;典型的产甲烷反应: 根据产甲烷菌的形态和生理生态特征,可将其分类如下:产甲烷杆菌目产甲烷杆菌科产甲烷球菌目产甲烷球菌科产甲烷
13、微菌目产甲烷微菌科产甲烷八叠球菌科产甲烷杆菌属产甲烷杆短菌属甲酸产甲烷杆菌瘤胃产甲烷杆菌产甲烷球菌属范氏产甲烷球菌产甲烷微菌属产甲烷菌属产甲烷螺菌属产甲烷八叠球菌属产甲烷丝菌属运动产甲烷微菌黑海产甲烷微菌亨氏产甲烷螺菌巴氏产甲烷八叠球菌索氏产甲烷丝菌属最新的分类(Bergys细菌手册第九版),共分为:三目、七科、十九属、65种;产甲烷菌有各种不同的形态,常见的有:产甲烷杆菌;产甲烷球菌;产甲烷八叠球菌;产甲烷丝菌;等等。在生物分类学上,产甲烷菌(Methanogens)属于古细菌(Archaebacteria),大小、外观上与普通细菌(Eubacteria)相似,但实际上,其细胞成分特殊,特别
14、是细胞壁的结构较特殊;在自然界的分布,一般可以认为是栖息于一些极端环境中(如地热泉水、深海火山口、沉积物等),但实际上其分布极为广泛,如污泥、瘤胃、昆虫肠道、湿树木、厌氧反应器等;产甲烷菌都是严格厌氧细菌,要求氧化还原电位在-150-400mv,氧和氧化剂对其有很强的毒害作用;产甲烷菌的增殖速率很慢,繁殖世代时间长,可达46天,因此,一般情况下产甲烷反应是厌氧消化的限速步骤三、厌氧生物处理的影响因素产甲烷反应是厌氧消化过程的控制阶段,因此,一般来说,在讨论厌氧生物处理的影响因素时主要讨论影响产甲烷菌的各项因素;主要影响因素有:温度、pH值、氧化还原电位、营养物质、F/M比、有毒物质等。1、温度
15、:温度对厌氧微生物的影响尤为显著;厌氧细菌可分为嗜热菌(或高温菌)、嗜温菌(中温菌);相应地,厌氧消化分为:高温消化(55C左右)和中温消化(35C左右);高温消化的反应速率约为中温消化的1.51.9倍,产气率也较高,但气体中甲烷含量较低;当处理含有病原菌和寄生虫卵的废水或污泥时,高温消化可取得较好的卫生效果,消化后污泥的脱水性能也较好;随着新型厌氧反应器的开发研究和应用,温度对厌氧消化的影响不再非常重要(新型反应器内的生物量很大),因此可以在常温条件下(2025C)进行,以节省能量和运行费用。2、pH值和碱度:pH值是厌氧消化过程中的最重要的影响因素;重要原因:产甲烷菌对pH值的变化非常敏感
16、,一般认为,其最适pH值范围为6.87.2,在8.2时,产甲烷菌会受到严重抑制,而进一步导致整个厌氧消化过程的恶化;厌氧体系中的pH值受多种因素的影响:进水pH值、进水水质(有机物浓度、有机物种类等)、生化反应、酸碱平衡、气固液相间的溶解平衡等;厌氧体系是一个pH值的缓冲体系,主要由碳酸盐体系所控制;一般来说:系统中脂肪酸含量的增加(累积),将消耗,使pH下降;但产甲烷菌的作用不但可以消耗脂肪酸,而且还会产生,使系统的pH值回升。碱度曾一度在厌氧消化中被认为是一个至关重要的影响因素,但实际上其作用主要是保证厌氧体系具有一定的缓冲能力,维持合适的pH值;厌氧体系一旦发生酸化,则需要很长的时间才能
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二章 废水生物处理基本原理 第二 废水 生物 处理 基本原理
链接地址:https://www.31ppt.com/p-2093673.html