《数理金融学第3章资本资产定价模型ppt课件.ppt》由会员分享,可在线阅读,更多相关《数理金融学第3章资本资产定价模型ppt课件.ppt(54页珍藏版)》请在三一办公上搜索。
1、数理金融学 第3章,资本资产定价模型,投资学 第6章,2,3.1 资本资产定价模型(CAPM),资本资产定价模型(Capital Asset Pricing Model,CAPM)是由美国Stanford大学教授夏普等人在马克维茨的证券投资组合理论基础上提出的一种证券投资理论。CAPM解决了所有的人按照组合理论投资下,资产的收益与风险的问题。CAPM 理论包括两个部分:资本市场线(CML)和证券市场线(SML)。,投资学 第6章,3,在前面,我们讨论了由风险资产构成的组合,但未讨论资产中加入无风险资产的情形。假设无风险资产的具有正的期望收益,且其方差为0。将无风险资产加入已经构成的风险资产组合
2、(风险基金)中,形成了一个无风险资产+风险基金的新组合,则可以证明:新组合的有效前沿将是一条直线。,3.1.1 引子,投资学 第6章,4,命题3.1:一种无风险资产与风险组合构成的新组合的有效边界为一条直线。,一种风险资产与无风险资产构成的组合,其标准差是风险资产的权重与标准差的乘积。,投资学 第6章,6,收益rp,风险p,rf,不可行,非有效,投资学 第6章,7,3.1.2 分离定理,无论投资者的偏好如何,直线FM上的点就是最优投资组合,形象地,该直线将无差异曲线与风险资产组合的有效边界分离了。分离定理(Separation theorem):投资者对风险的规避程度与该投资者风险资产组合的最
3、优构成是无关的。所有的投资者,无论他们的风险规避程度如何不同,都会将切点组合(风险组合)与无风险资产混合起来作为自己的最优风险组合。因此,无需先确知投资者偏好,就可以确定风险资产最优组合。风险厌恶较低的投资者可以多投资风险基金M,少投资无风险证券F,反之亦反。,投资学 第6章,8,分离定理对组合选择的启示,若市场是有效的,由分离定理,资产组合选择问题可以分为两个独立的工作,即资本配置决策(Capital allocation decision)和资产选择决策(Asset allocation decision)。资本配置决策:考虑资金在无风险资产和风险组合之间的分配。资产选择决策:在众多的风险
4、证券中选择适当的风险资产构成资产组合。由分离定理,基金公司可以不必考虑投资者偏好的情况下,确定最优的风险组合。,投资学 第6章,9,3.1.3 资本市场线的导出,一个具有非凡创意的假设!假设市场中的每个投资者都是资产组合理论的有效应用者,人人都是理性的!这些投资者对每个资产回报的均值、方差以及协方差具有相同的预期,但风险规避程度不同。根据分离定理,这些投资者将选择具有相同的结构的风险基金(风险资产组合)。投资者之间的差异仅仅体现在风险基金和无风险资产的投资比例上。,投资学 第6章,10,若市场处在均衡状态,即供给需求,且每一位投资者都购买相同的风险基金,则该风险基金应该是何种基金呢?(对这个问
5、题的回答构成了CAPM的核心内容)风险基金市场组合(Market portfolio):与整个市场上风险证券比例一致的资产组合。对股票市场而言,就是构造一个包括所有上市公司股票,且结构相同的基金(如指数基金)。因为只有当风险基金等价与市场组合时,才能保证:(1)全体投资者购买的风险证券等于市场风险证券的总和市场均衡;(2)每个人购买同一种风险基金分离定理。,投资学 第6章,11,在均衡状态下,资产组合(FM直线上的点)是市场组合M与无风险资产F构成的组合,因此,可以根据图形得到,投资学 第6章,13,CML是无风险资产与风险资产构成的组合的有效边界。CML的截距被视为时间的报酬CML的斜率就是
6、单位风险溢价在金融世界里,任何资产组合都不可能超越CML。由于单个资产一般来说,并不是最优的资产组合,因此,单个资产也位于该直线的下方。,投资学 第6章,14,3.1.4 定价模型证券市场线(SML),CML将一项有效资产组合的期望收益率与其标准差联系起来,但它并未表明一项单独资产的期望收益率是如何与其自身的风险相联系。CAPM模型的最终目的是要对证券进行定价,因此,就由CML推导出SML。命题3.2:若市场投资组合是有效的,则任一资产i的期望收益满足,投资学 第6章,15,证明:考虑持有权重w资产i,和权重(1-w)的市场组合m构成的一个新的资产组合,由组合计算公式有,证券i与m的组合构成的
7、有效边界为im;im不可能穿越资本市场线;当w=0时,曲线im的斜率等于资本市场线的斜率。,投资学 第6章,16,投资学 第6章,17,证券市场线(Security market line),投资学 第6章,18,方程以 为截距,以 为斜率。因为斜率是正的,所以 越高的证券,其期望回报率也越高。称证券市场线的斜率 为风险价格,而称 为证券的风险。由 的定义,我们可以看到,衡量证券风险的关键是该证券与市场组合的协方差而不是证券本身的方差。,投资学 第6章,19,系数。美国经济学家威廉夏普提出的风险衡量指标。用它反映资产组合波动性与市场波动性关系(在一般情况下,将某个具有一定权威性的股指(市场组合
8、)作为测量股票值的基准)。如果值为1.1,即表明该股票波动性要比市场大盘高10,说明该股票的风险大于市场整体的风险,当然它的收益也应该大于市场收益,因此是进攻型证券。反之则是防守型股票。无风险证券的值等于零,市场组合相对于自身的值为1。,计算实例:在实际操作中,人们如要计算某资产组合的预期收益率,那么,应首先获得以下三个数据:无风险利率,市场资产组合预期收益率,以及值。假定某证券的无风险利率是3%,市场资产组合预期收益率是8%,值为1.1,则该证券的预期收益率为?,可见,值可替代方差作为测定风险的指标。,投资学 第6章,21,思考:现实中的证券有没有可能高(低)于证券市场线?,.,.,投资学
9、第6章,22,注 意,SML给出的是期望形式下的风险与收益的关系,若预期收益高于证券市场线给出的的收益,则应该看多该证券,反之则看空。SML只是表明我们期望高贝塔的证券会获得较高的收益,并不是说高贝塔的证券总能在任何时候都能获得较高的收益,如果这样高贝塔证券就不是高风险了。若当前证券的实际收益已经高于证券市场线的收益则应该看空该证券,反之则看多。当然,从长期来看,高贝塔证券将取得较高的平均收益率期望回报的意义。,投资学 第6章,23,注 意,SML虽然是由CML导出,但其意义不同(1)CML给出的是市场组合与无风险证券构成的组合的有效集,任何资产(组合)的期望收益不可能高于CML。(2)SML
10、给出的是单个证券或者组合的期望收益,它是一个有效市场给出的定价,但实际证券的收益可能偏离SML。均衡时刻,有效资产组合可以同时位于资本市场线和证券市场线上,而无效资产组合和单个风险资产只能位于证券市场线上.,投资学 第6章,24,3.1.5 证券市场线与系统风险,设某种资产i的收益为,设,则由(1)和(2)得到,投资学 第6章,25,由贝塔的意义可知,它定义资产风险与市场整体风险的相关关系,也就是贝塔定义了系统风险对资产的影响。,投资学 第6章,26,投资组合的贝塔值公式,命题3.3:组合的贝塔值是组合中各个资产贝塔值的加权平均。,命题3.4:系统风险无法通过分散化来消除。,投资学 第6章,2
11、8,系统风险,非系统风险,投资学 第6章,29,小 结,SML的表示资产的波动性与市场波动的关系,市场组合的1,若1,则表明其波动大于市场,或者说由于市场波动导致证券比市场更大的波动,反之则反。衡量的风险是系统风险的,系统风险无法通过分散化消除。由于证券的期望收益是关于的线性函数,这表明市场仅仅对系统风险进行补偿,而对非系统风险不补偿。,投资学 第6章,30,3.1.6 证券风险概念的进一步拓展,系统风险(Systemic risk)它是指由于公司外部、不为公司所预计和控制的因素造成的风险。通常表现为国家、地区性战争或骚乱(如9.11事件,美国股市暴跌),全球性或区域性的石油恐慌,国民经济严重
12、衰退或不景气,国家出台不利于公司的宏观经济调控的法律法规,中央银行调整利率等。系统性风险事件一旦发生,将波及所有的证券,但是由于不同,不同的证券对此反应是不同,可见又反应某种证券的风险对整个市场风险的敏感度。,投资学 第6章,31,系统风险及其因素的特征:(1)系统性风险由共同一致的因素产生。(2)系统性风险对证券市场所有证券都有影响,包括某些具有垄断性的行业同样不可避免,所不同的只是受影响的程度不同。(3)系统性风险不能通过投资分散化达到化解的目的。(4)系统风险与预期收益成正比关系,市场只对系统风险进行补偿。,证券的系统风险本质上是该证券与市场上所有证券的协方差加权和。,一般地,由于一种证
13、券不可能与市场上所有证券之间都相互独立,故系统风险不为0。问题:用方差与测量证券风险性质相同吗?为什么?,投资学 第6章,33,非系统性风险定义:产生于某一证券或某一行业的独特事件,如破产、违约等,与整个证券市场不发生系统性联系的风险。即总风险中除了系统风险外的偶发性风险,或称残余风险和特有风险(Special risk)。非系统风险可以通过组合投资予以分散,因此,投资者可以采取措施来规避它,所以,在定价的过程中,市场不会给这种风险任何酬金。对单个证券而言,由于其没有分散风险,因此,其实际的风险就是系统风险加上特有风险,所以其收益就是,特有风险补偿,投资学 第6章,35,3.1.7 CAPM的
14、基本假定,投资者根据一段时间内(单期)组合的预期收益率和方差来评价投资组合(理性)所有投资者都可以免费和不断获得有关信息(市场有效)资产无限可分,投资者可以购买任意数量的资产投资者可以用无风险利率借入或者贷出货币不存在税收和交易费用同质期望(Homogeneous expectations):由于投资者均掌握了马克维茨模型,他们对证券的预期收益率和标准差和协方差的看法一致。,投资学 第6章,36,若所有的投资者信息成本相同(假定2),都能获得相同的信息,都将均方分析(假定6)应用于同样广泛的证券(假定3和假定4),在一个相同的计划期内计划他们的最优风险投资组合(假定1),投资顺序内容也相同(假
15、定6),且不考虑其他因素(假定5),则他们必然达到相同结构的最优资产组合。投资者的不同仅仅是风险偏好和拥有的投资禀赋不同。,投资学 第6章,37,同质期望,如果IBM股票在市场资产组合中的比例是0.1%,那么,同质期望假定就意味着每一投资者都会将自己投资于风险资产的资金的0.1%投资于同方的股票。分析:如果IBM股票没有进入市场资产组合,则投资者对IBM股票需求为零,其价格将会下跌,当它的股价变得异乎寻常的低时(回报提高),投资就会考虑让其进入市场组合。最终,IBM股票与市场组合的边际收益相等时,即IBM的均衡价格决定时,也即IBM股票在市场资产组合中的比例是0.1%时,所有投资者不再增加购买
16、(出售)IBM股票。,投资学 第6章,38,3.2 CAPM的扩展,没有无风险资产尽管短期国债名义上是无风险资产,但是,它们的实际收益是不确定的。CML退化:投资者不得不在风险资产的有效率边界上选择资产组合。具有无风险借出但无借入情况下的资产组合选择CML均方有效前沿,E(r),F,A,P,Q,CML,St.Dev,具有无风险借出但无借入情况下的资产组合选择,更多风险忍耐的投资者,更少风险忍耐的投资者,无风险借贷利率不相等条件下的CML:三段曲线个人如果要借款投资于风险资产组合,必须付出比国库券利率高的利率。例如,经纪人索要的保证金贷款利率就高于国库券利率。,E(r),F,A,P,Q,B,CM
17、L,St.Dev,高风险忍耐的投资者,中风险忍耐的投资者,低风险忍耐的投资者,投资学 第6章,42,3.3 CAPM的应用:项目选择,已知一项资产的买价为p,而以后的售价为q,q为随机的,则,随机条件下的贴现率(风险调整下的利率),投资学 第6章,43,例:某项目未来期望收益为1000万美元,由于项目与市场相关性较小,=0.6,若当时短期国债的平均收益为10,市场组合的期望收益为17,则该项目最大可接受的投资成本是多少?,投资学 第6章,44,项目选择,若一个初始投资为P的投资项目i,未来(如1年)的收入为随机变量q,则有,且由贝塔的定义知,方括号中的部分成为q的确定性等价(certainty
18、 equivalence),它是一个确定量(无风险),用无风险利率贴现。,投资学 第6章,46,项目选择的准则,计算项目的确定性等价将确定性等价贴现后与投资额p比较,得到净现值,即,企业将选择NPV最大的项目,上式就将基于CAPM的NPV评估法。,投资学 第6章,47,对企业A而言,从企业自身看,它要选择NPV最大的项目。对投资企业A的投资者看,投资者希望购买A公司股票后,能使得其有效边界尽可能向左方延伸有效组合。二者的统一就是基于CAPM的项目评估投资项目NPV最大公司收益最大成为有效组合CAPM(CML)一致性定理:公司采用CAPM来作为项目评估的目标与投资者采用CAPM进行组合选择的目标
19、是一致的。,投资学 第6章,48,附录1:从规范到实证,为求得某个证券i的贝塔,可以通过对SML变换得到,在时间序列中,则有,投资学 第6章,49,其中,i为股票,这里选用上海机场,m为上证指数本例中的回报采用对数日回报来计算,样本区间为2001.1.22001.12.31,共240个样本,由此估计得到的是2001年该股票的贝塔值。用一元线性回归模型股票回报和市场回报之间的比例关系,就得到贝塔。,投资学 第6章,52,Eviews 回归结果,Estimation Command:=LS RSJ C RSHEstimation Equation:=RSJ=C(1)+C(2)*RSHSubstituted Coefficients:=RSJ=0.0001337928893+0.8632084114*RSH,投资学 第6章,53,个人练习题,某基金下一年的投资计划是:基金总额的10投资于收益率为7的无风险资产,90投资于一个市场组合,该组合的期望收益率为15。若该基金=0.9,基金中的每一份代表其资产的100元,年初该基金的售价为107美元,请问你是否愿意购买该基金?为什么?,投资学 第6章,54,下表给出预期的市场组合和两支股票的收益率。,问题:如果市场组合的收益5和25是等可能的,则两只股票的预期收益率是多少?,
链接地址:https://www.31ppt.com/p-2082142.html