《植物的水分生理ppt课件.ppt》由会员分享,可在线阅读,更多相关《植物的水分生理ppt课件.ppt(86页珍藏版)》请在三一办公上搜索。
1、第一篇 植物的物质生产和光能利用,第一章 植物的水分生理,第一节 植物对水分的需要,一、植物的含水量一般植物组织含水量占鲜重的7590二、植物体内水分的存在状态,细胞中的水可分为二类 束缚水(bound water)-与细胞组分紧密结合不能自由移动、不易蒸发散失的水。自由水(free water)与细胞组分之间吸附力较弱,可以自由移动的水。,三、水分在植物生命活动中的作用1.水分是细胞质的主要成分,凝胶作用 溶胶 凝胶 溶胶作用,2.水分是代谢过程的反应物质 3.水分是各种生理生化反应和运输物质的介质 4.水分能使植物保持固有的姿态 生理需水-满足植物生理活动所需要的水分 生态需水-利用水的理
2、化特性,调节植物周围的环境所需要的水分,第二节 植物细胞对水分的吸收,一、扩散(diffusion)物质分子从高浓度(高化学势)区域向低浓度(低化学势)区域转移,直到均匀分布的现象。扩散速度与物质的浓度梯度成正比。扩散适合水分的短距离移动,水的蒸发、叶片的蒸腾作用都是水分子扩散现象。,二、集流(mass flow)液体中成群的原子或分子在压力梯度作用下共同移动的现象。,水通道蛋白,生物膜上具有通透水分功能的内在蛋白,亦称水孔蛋白(aquaporin)质膜内在蛋白液泡膜内在蛋白,6个跨膜螺旋与两个保留的NPA(Asn-Pro-Ala)残基的水孔蛋白的结构,(一)自由能、化学势、水势的基本概念1.
3、自由能(free energy,G)在等温、等压条件下,能够做最大有用功的那部分能量。2.化学势(chemical potential,)在等温、等压下,1mol的组分(物质)所具有的自由能。,三、渗透作用(osmosis)-溶液中的溶剂分子(水)通过半透膜而移动的现象。,3.水的化学势和水势水的化学势(w):当温度、压力及物质数量(水以外)一定时,体系中1mol的水的自由能。水势(water potential):每偏摩尔体积的水在体系中的化学势与纯水在相同温度、压力下的化学势之间的差。,偏摩尔体积:在恒温、恒压、其他组分浓度不变情况下,混合体系中1mol该物质所占的有效体积。单位:水势=水
4、的化学势/水的偏摩尔体积=J mol-1/m3 mol-1=N m mol-1/m 3 mol-1=N m-2=Pa纯水 ow=零零值并不是没有水势,就好比定海平面为海拔高度为0一样,作为一个参比值。溶液:溶液的水势为负值,浓度越大,水势越低,(二)渗透作用,由渗透作用引起的水分运转a.烧杯中的纯水和漏斗内液面相平;b.由于渗透作用使烧杯内水面降低而漏斗内液面升高(通过渗透计可测定渗透势、溶质势),水分从水势高的系统通过半透膜向水势低的系统移动的现象,原生质层:包括质膜、细胞质和液泡膜看成一个半透膜 液泡内的细胞液含许多溶解在水中的物质,具有水势。,(三)植物细胞可以构成一个渗透系统,刚开始发
5、生质壁分离,明显发生质壁分离,洋葱上表皮细胞的质壁分离,(四)植物细胞的水势1.细胞水势的组分 细胞的水势公式:w p g细胞的溶质势(solute potential 渗透势)植物细胞中含有大量溶质:无机离子、糖类、有机酸、色素、悬浮在细胞液中的蛋白质、核酸等高分子物质也可视为溶质。一般陆生植物叶片细胞的溶质势是-2-1MPa,旱生植物叶片细胞的溶质势可以低到-10 MPa。干旱时,细胞液浓度高,溶质势较低。,细胞的压力势(press potential)原生质体、液泡吸水膨胀,对细胞壁产生的压力称为膨压(turgor pressure)。细胞壁在受到膨压作用的同时会产生一种与膨压大小相等、
6、方向相反的壁压,即压力势。,压力势一般为正值,它提高了细胞的水势。草本植物叶肉细胞的压力势,在温暖天气的午后为0.30.5MPa,晚上则达1.5MPa。在特殊情况下,压力势也可为等于零或负值。例如初始质壁分离时,细胞的压力势为零;剧烈蒸腾时,细胞壁出现负压,细胞的压力势呈负值。,g:重力势(gravity otential)水分因重力下移与相反力量相等时的力量。重力势依赖参与状态下水的高度、水的密度和重力加速度而定,当水高1m时重力势是0.01MPa。,细胞的衬质势(matrix petential m,是细胞胶体物质的亲水性和毛细管对自由水的束缚(吸引)而引起的水势降低值,称为衬质势。衬质势
7、一般呈负值。对于无液泡的分生组织和干燥种子来说,m是细胞水势的主要组分,其 wm,含有液泡成熟细胞的水势:由于细胞质水势组分较为复杂,各细胞器中水势又难以直接测定,而液泡的水势相对较易测定,因此,细胞水势通常用液泡的水势来代替。由于具有液泡的细胞含水量很高,衬质势趋于0,可忽略不计。含有液泡细胞水势公式可用下式表示:w 液泡 p,细胞的吸水形式,植物细胞的水势主要由s、m和p组成,其中某一组分的变化都会改变细胞水势值及其与周围环境水势的差值,从而影响细胞吸水能力。据此,将植物细胞吸水方式分为以下三种:1.渗透吸水(osmotic absorption of water)2.吸胀吸水(imbib
8、ing absorption of water)3.降压吸水(negative pressure absorption of water),低渗溶液:细胞置于纯水或稀溶液中,外液水势高于细胞水势,外侧水分向细胞内渗透,细胞吸水,体积变大等渗溶液:外液水势等于细胞水势,水分进出平衡,细胞体积不变高渗溶液:将植物置于浓溶液中,外液水势低于细胞水势,水从细胞内向外渗透,细胞失水,体积变小,渗透吸水,吸胀吸水-依赖于低的m而引起的吸水。,风干种子中,处于凝胶状态的原生质的衬质势常低于-10MPa,甚至-100MPa,所以吸胀吸水就很容易发生。未形成液泡的幼嫩细胞能利用细胞壁的果胶、纤维素以及细胞中的蛋
9、白质等亲水胶体对水的吸附力吸收水分。,降压吸水-因p的降低而引发的细胞吸水蒸腾旺盛时,导管和叶肉细胞的细胞壁失水收缩,压力势下降,引起水势下降而吸水。失水过多时,还使细胞壁内陷而产生负压,这时p0,细胞水势更低,吸水力更强。水稻开花时颖壳的张开是由着生在颖花内的浆片吸水膨大所致。浆片的吸水膨大是由细胞壁松弛、压力势下降引起的。,细胞吸水过程中水势组分的变化,细胞吸水和失水的过程中,细胞的体积发生变化,其水势、溶质势、压力势会随之改变。细胞吸水,体积增大,p增高,细胞含水量增加,s增高,w增高。细胞吸水达紧张状态,细胞体积最大 时,w=0,p=-s细胞失水,体积缩小,p降低,细胞含水量减小,s降
10、低,w降低。初始质壁分离时,p=0,w=s,细胞相对体积为1。,初始质壁分离,(五)细胞间的水分移动 决定与相邻两细胞间的水势差异,水势高的细胞中的水分向水势低的细胞流动。,A B,多个细胞连在一起时,如果一端的细胞水势较高,另一端水势较低,顺次下降,就形成一个水势梯度,水分顺水势梯度从一端流向另一端。,纯水,-0.1-0.2-0.3-0.4-0.5-0.6-0.7-0.8,w,大 气,当土壤含水量达到田间持水量时,土壤溶液水势仅稍稍低于0,约为-0.01MPa。大气的水势通常低于-100MPa。通常土壤的水势植物根的水势茎木质部水势叶片的水势大气的水势,使根系吸收的水分可以源源不断地向地上部
11、分输送。,第三节 植物根系对水分的吸收,根系吸水的部位主要在根的尖端,从根尖向上约10mm的范围内,包括根冠、根毛区、伸长区和分生区,以根毛区的吸水能力最强,因为:根毛多,增大了吸收面积(510倍);细胞壁外层由果胶质覆盖,粘性较强,有利于和土壤胶体粘着和吸水;输导组织发达,水分转移的速度快。,一、根系吸水的途径,植物根部吸水主要通过根毛皮层、内皮层,再经中柱薄壁细胞进入导管质外体途径跨膜途径共质体途径,共质体,质外体,茑尾根成熟凯氏带,二、根系吸水的动力,(一)根压根压,是指由于植物根系生理活动而促使液流从根部上升的压力。大多数植物的根压为0.10.2MPa,有些木本植物的根压可达0.60.
12、7MPa。伤流和吐水是证实根压存在的两种生理现象。,1.伤流 从受伤或折断的植物组织伤口处溢出液体的现象。伤流是由根压引起的。从伤口流出的汁液叫伤流液。伤流液其中除含有大量水分之外,还含有各种无机物、有机物和植物激素等。,伤流和根压示意图伤流液从茎部切口处流出;用压力计测定根压,2.吐水 叶片尖端或边缘的水孔向外溢出液滴的现象。,叶尖水孔示意图一孔口及其下的通水组织以及木质部末端。,产生根压的原因:,1.植物根系主动吸收土壤溶液中的离子2.离子转运到根的内皮层内使中柱细胞和导管的溶质增加3.内皮层的水势低于土壤溶液的水势时,土壤中的水分顺水势梯度从外部经内皮层渗透进入中柱细胞和导管,(二)蒸腾
13、拉力(transpirational pull):由于蒸腾作用产生的一系列水势梯度使导管中水分上升的力量。,蒸腾拉力产生的吸水是由枝叶形成的力量传导到根而引起的被动吸水。吸水的主要动力,(一)土壤中的可用水分土壤中的水分和土壤水势,三、影响根系吸水的土壤条件,(二)土壤温度,1、土温低使根系吸水下降,原因:水粘度增加,扩散速率降低;根系呼吸速率下降,主动吸水减弱;根系生长缓慢,有碍吸水面积的扩大。2、土温过高对根系吸水不利,原因:提高根的木质化程度,加速根的老化,根细胞中各种酶蛋白变性失活。,(三)土壤通气状况,CO2浓度过高或O2不足,则根的呼吸减弱,不但会影响根压的产生和根系吸水,而且还会
14、因无氧呼吸累积较多的酒精而使根系中毒受伤。中耕耘田,排水晒田可增加根系周围的O2,减少CO2以及消除H2S等的毒害,以增强根系的吸水和吸肥能力。,(四)土壤溶液浓度,通常土壤溶液浓度较低,水势较高,根系易于吸水。在盐碱地上,水中的盐分浓度高,水势低(有时低于-10MPa),作物吸水困难。,第四节 植物的蒸腾作用,蒸腾作用(transpiration)-植物体内的水分以气态散失到大气中去的过程。,一、蒸腾作用的生理意义和方式(一)蒸腾作用的生理意义 1.蒸腾拉力是植物吸水与转运水分的主要动力 2.促进木质部汁液中物质的运输 3.降低植物体的温度(夏季,绿化地带的气温比非绿化地带的气温要低3-5)
15、4.有利于CO的吸收、同化,(二)蒸腾作用的方式皮孔(lenticular)蒸腾(茎、枝)角质层(cuticular)蒸腾(叶)气孔(stomatal)蒸腾(叶)植物蒸腾作用的最主要方式,皮孔,试验前,三天后,二、气孔蒸腾 stomatal transpiration(一)气孔的形态结构及生理特点 气孔是植物表皮上一对特化的细胞保卫细胞和由其围绕形成的开口的总称,是植物进行体内外气体交换的门户.,蔓陀萝叶气孔,小麦叶气孔,引起气孔运动的主要原因是:保卫细胞的吸水膨胀或失水收缩,(二)气孔运动的机制 气孔运动是由保卫细胞水势的变化而引起的。淀粉糖互变学说(starch-sugar-interco
16、nvertion)由植物生理学家F.E.Lloyd在1908年提出认为气孔运动是由于保卫细胞中蔗糖和淀粉间的相互转化而引起渗透势改变而造成的。,淀粉,可溶性糖,(pH6.17.3),(pH2.96.1),淀粉磷酸化酶,无机离子泵学说,又称 K+泵假说、钾离子学说,日本学者于1967年发现,照光时,K+从周围细胞进入保卫细胞,保卫细胞中K+浓度增加,溶质势降低,吸水,气孔张开;暗中则相反,K+由保卫细胞进入表皮细胞,保卫细胞水势升高,失水,气孔关闭。,光下:保卫细胞质膜上存在H+ATPase,被光激活,水解ATP,产生的能量将H+从保卫细胞分泌到周围细胞中,使保卫细胞的pH值升高,周围细胞的pH
17、值降低,驱动K+通过保卫细胞K+通道进入保卫细胞,在进入液泡,K+浓度增加,水势降低,水分进入,气孔张开。暗处:H+ATPase缺乏ATP停止,保卫细胞质膜去极化,促使K+经外向K+通道向周围细胞转移,导致保卫细胞水势升高,水分外移,气孔关闭。,3.苹果酸代谢学说(malate metabolism theory),光照下,保卫细胞内的部分CO2被利用时,pH上升至8.08.5,从而活化了PEP(磷酸烯醇式丙酮酸)羧化酶,它可催化由淀粉降解产生的PEP与HCO3-结合成草酰乙酸,并进一步被NADPH还原为苹果酸。PEPHCO3-PEP羧化酶 草酰乙酸磷酸 草酰乙酸NADPH(NADH)苹果酸还
18、原酶 苹果酸NAPD+(NAD+)苹果酸的存在可降低水势,促使保卫细胞吸水,气孔张开。同时,苹果酸被解离为2H+和苹果酸根;苹果酸根进入液泡和Cl-共同与K+在电学上保持平衡。当叶片由光下转入暗处时,该过程逆转。,(三)影响气孔运动的因素,1.光 通常气孔在光下张开,暗中关闭。光促进气孔开启:红光-间接效应:叶绿体-光合作用-提供能量,产生苹果酸;蓝光-直接效应:隐花色素-活化质膜H+-ATP酶,泵出H+,驱动K+进入保卫细胞内。水势降低,气孔张开。2.二氧化碳 低浓度促进张开,高浓度下关闭 低浓度CO2可活化PEP羧化酶;高浓度CO2使质膜透性增加,K+泄漏。,3.温度 随温度的上升气孔开度
19、增大,30左右开度最大。4.植物激素 细胞分裂素和生长素促进气孔张开,脱落酸促进气孔关闭,失水多时,保卫细胞中脱落酸增加,促进膜上外向K+通道开放,使K+排出,导致气孔关闭。外界较高的光强和温度、较低的湿度、较大的风速有于气孔的蒸腾。,三、影响蒸腾作用的外、内条件,(一)外界条件内外蒸汽压差光、空气相对湿度、温度、风(二)内部因素气孔:气孔频度(每cm2叶片的气孔数)、气孔大小气孔下腔叶片内部面积,扩散力,(三)减慢蒸腾速率的途径,.减少蒸腾面积 移栽植物时,去掉一些枝叶,减少蒸腾面积,降低蒸腾失水量,有利其成活。.降低蒸腾速率 避开促进蒸腾的外界条件,降低植株的蒸腾速率。.使用抗蒸腾剂 能降
20、低植物蒸腾速率而对光合作用和生长影响不太大的物质。,蒸腾作用的指标,(一)蒸腾作用的指标1.蒸腾速率又称蒸腾强度 单位时间内、单位叶面积上通过蒸腾作用散失的水量。蒸腾速率蒸腾失水量/单位叶面积时间 多数植物白天15250gm-2h-1,夜晚120gm-2h-1,2.蒸腾效率 植物每蒸腾1kg水时所形成的干物质的g数。蒸腾效率=形成干物质g/蒸腾失水kg(一般植物18gkg-)3.蒸腾系数又称需水量(蒸腾效率的倒数)植物每制造1g干物质所消耗水分的g数 蒸腾系数蒸腾失水g/形成干物质g多数植物在1251000之间。(越小,利用水分效率越高)。草本植物木本植物,小麦约为540,松树约为40;C3植
21、物 C4植物,水稻约为680,玉米约为370,第五节 植物体内的水分运输,一、水分运输的途径和速度途径:土壤 根毛 皮层 内皮层 中柱鞘 根的导管 茎的导管 叶柄导管 叶肉细胞 叶细胞间隙 气孔下腔 气孔 大气,经过死细胞的长距离运输,经过活细胞的短距离运输,在木质部运输速度比在薄壁细胞中快得多,为3-45m.h-1 活细胞中原生质对水流阻力很大(亲水胶体把水吸住,保持在水合膜上,水流便遇到阻力)。在0.1MPa下,水流经过原生质体的速度只有10-3 cm.h-1,水分运输的速度,二、水分沿导管或管胞上升的机制动力:下:根压上:蒸腾拉力中:内聚力:相同分子之间相互吸引的力量。内聚力学说(coh
22、esion theory):水分子的内聚力大于张力,从而能保证水分在植物体内的向上运输。,二、水分沿导管或管胞上升的动力,水分上升的动力是根压和蒸腾拉力导管中的水柱的连续性通常用狄克逊(H.H.Dixon)的内聚力学说(cohesion theory)来解释:水分子的内聚力大于张力,从而能保证水分在植物体内的向上运输。导管水柱中的张力可达0.5-3.0MPa水分子的内聚力可达几十MPa。,北美红杉高可达110m,第六节 合理灌溉的生理基础,合理灌溉的基本原则:用最少量的水取得最大的效果。,一、作物的需水规律,(一)不同作物对水分的需要量不同根据蒸腾系数估计水分的需要量:生物产量蒸腾系数=理论最
23、低需水量(生物产量-指作物一生中形成的全部有机物的总量),一些作物的蒸腾系数:,(二)同一作物不同生育期对水分的需要量不同 早稻苗期 由于蒸腾面积较小,水分消耗量不大;分蘖期 蒸腾面积扩大,气温逐渐升高,水分消耗量增大;孕穗开花期 蒸腾量达最大值,耗水量也最多;成熟期 叶片逐渐衰老、脱落,水分消耗量又逐渐减少。,(三)作物的水分临界期-植物在生命周期中,对水分缺乏最敏感、最易受害的时期。大多处于花粉母细胞四分体形成期,这个时期一旦缺水,就使性器官发育不正常。如小麦一生中有两个水分临界期:孕穗期,缺水,小穗发育不良,特别是雄性生殖器官发育受阻或畸形发展。开始灌浆到乳熟末期,缺水,影响旗叶的光合速
24、率和寿命,减少有机物的制造和运输,影响灌浆,空瘪粒增多,产量下降。,由于水分临界期缺水对产量影响很大,因此,应确保农作物水分临界期的水分供应。调亏灌溉(regulated deficit irrigation,RDI)-一种新型节水技术,在作物营养生长旺期适度亏水,在作物需水临界期充分供水,促控结合提高水的利用效率,增加作物产量。,二、合理灌溉指标,作物是否需要灌溉可依据气候特点、土壤墒情、作物的形态、生理性状加以判断。(一)土壤指标根系活动层(090cm)的土壤含水量为田间持水量的6080为宜,如低于此值,应灌溉。田间持水量-指排除重力水以后的土壤含水量。土壤含水量对灌溉有一定的参考价值,最
25、好应以作物本身的情况作为灌溉的直接依据。,(二)形态指标作物缺水的形态表现为:1.萎蔫 细胞膨压下降,幼嫩茎叶尤易发生萎蔫 2.生长速率下降 缺水影响正常代谢,生长缓慢 3.茎叶颜色变化 由于生长缓慢,叶绿素浓度相对增大,叶色变深,呈暗绿色;茎叶有时变红,这是因为干旱时糖类分解大于合成,细胞中积累较多的可溶性糖,形成较多的花色素的缘故。,(三)生理指标,1.叶水势 缺水时叶片水势下降不同的叶片、不同的时间测定的水势值有差异,一般取样以上午910点为宜。2.渗透势 缺水时叶片细胞溶质势下降3.细胞汁液浓度 干旱情况下细胞含水量下降,汁液浓度升高,当汁液浓度超过一定值后,会阻碍植株生长。4.气孔开度随着水分的减少,气孔开度逐渐缩小,当土壤的可利用水耗尽时,气孔完全关闭。,三、灌溉的方法,1.漫灌 应用最广泛的灌溉方法,操作简单方便、运行费用低。2.喷灌可解除大气干旱和土壤干旱,保持土壤团粒结构,防止土壤盐碱化。节水3040 3.滴灌是通过埋入地下或设置于地面的塑料管网络,将水分输送到作物根系周围让作物根系经常处于保持在良好的水分、空气、营养状态下。节水7080,
链接地址:https://www.31ppt.com/p-2069753.html