排列组合的综合应用(公开课)ppt课件.ppt
《排列组合的综合应用(公开课)ppt课件.ppt》由会员分享,可在线阅读,更多相关《排列组合的综合应用(公开课)ppt课件.ppt(25页珍藏版)》请在三一办公上搜索。
1、,排列组合的综合应用,2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力,3.学会应用数学思想和方法解决排列组合问题.,教学目标,1.进一步理解和应用分步计数原理和分类计数原理。,完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2 种不同的方法,在第n类办法中有mn种不同的方法,那么完成这件事共有:种不同的方法,复习巩固,1.分类计数原理(加法原理),2.分步计数原理(乘法原理),完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2 种不同的方法,做第n步有mn种不同的方法,那么完成这件事共有:
2、种不同的方法,3.分类计数原理分步计数原理区别,分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。,分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件,解决排列组合综合性问题的一般过程如下:,1.认真审题弄清要做什么事,2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。,3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.,解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略,一.特殊元素和特殊位置优先策略,例1.由0,1,2,3,4,5可以组成多少个没
3、有重复数字五位奇数.,解:由于末位和首位有特殊要求,应该优先安 排,以免不合要求的元素占了这两个位置,先排末位共有_,然后排首位共有_,最后排其它位置共有_,位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件,7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?,练习题,二.相邻元素捆绑策略,例2.7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.,解:可
4、先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。,要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.,2、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为(),练习题,20,三.不相邻问题插空策略,例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?,元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端,某班新年联欢会原定的5个节目已排
5、成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为(),30,练习题,四.定序问题倍缩空位插入策略,例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法,解:,(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:,(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 种方法,其余的三个位置甲乙丙共有 种坐法,则共有 种方法,1,思考:可以先让甲乙丙就坐吗?,(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法,4
6、*5*6*7,定序问题可以用倍缩法,还可转化为空位或插空模型处理,练习题,10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?,五.重排问题求幂策略,例5.把6名实习生分配到7个车间实习,共有多少种不同的分法,解:完成此事共分六步:把第一名实习生分配到车间有_种分法.,7,某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法(),练习题,六.平均分组问题除法策略,理论部分:平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要除以m!,其中m表示组数。,例如 把abcd分成平均两组,ab,cd,ac,bd,ad,bc,有_多少种分法?,cd
7、,bd,bc,ad,ac,ab,这两个在分组时只能算一个,七.元素相同问题隔板策略,例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?,解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成个空隙。,在个空档中选个位置插个隔板,可把名额分成份,对应地分给个班级,每一种插板方法对应一种分法共有_种分法。,练习题,10个相同的球装5个盒中,每盒至少一个有多少装法?,将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n个元素排成一排的n-1个空隙中,所有分法数为,八.排列组合混合问题先选后排策略,例8.有5个不同的小球,装入4个不同的盒
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 排列组合 综合 应用 公开 ppt 课件
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-2066572.html