特征值与特征向量(高等代数)(课堂ppt)课件.ppt
《特征值与特征向量(高等代数)(课堂ppt)课件.ppt》由会员分享,可在线阅读,更多相关《特征值与特征向量(高等代数)(课堂ppt)课件.ppt(29页珍藏版)》请在三一办公上搜索。
1、1,2 线性变换的运算,3 线性变换的矩阵,4 特征值与特征向量,1 线性变换的定义,6线性变换的值域与核,8 若当标准形简介,9 最小多项式,7不变子空间,小结与习题,第七章 线性变换,5 对角矩阵,一、特征值与特征向量,二、特征值与特征向量的求法,7.4 特征值与特征向量,三、特征子空间,四、特征多项式的有关性质,2,从本节开始,我们主要讨论,如何选择一组适当,的基,使V的某个线性变换在这组基下的矩阵就是,一个对角矩阵?,引入,有限维线性空间V中取定一组基后,V的任一线性,希望这个矩阵越简单越好,如对角矩阵.,变换都可以用矩阵来表示.为了研究线性变换性质,,3,设是数域P上线性空间V的一个
2、线性变换,,则称为 的一个特征值,称为的属于特征值,一、特征值与特征向量,定义:,若对于P中的一个数存在一个V的非零向量,使得,的特征向量.,4,几何意义:特征向量经线性变换后方向保持,由此知,特征向量不是被特征值所唯一确定的,,注:,若 是 的属于特征值的特征向量,则,也是 的属于的特征向量.,但是特征值却是被特征向量所唯一确定的,即,若且,则,5,设 是V的一组基,,线性变换在这组基下的矩阵为A.,下的坐标记为,二、特征值与特征向量的求法,分析:,设是的特征值,它的一个特征向量在基,则 在基下的坐标为,6,而 的坐标是,于是,又,从而,又,即 是线性方程组 的解,,有非零解.,所以它的系数
3、行列式,7,以上分析说明:,若是的特征值,则,反之,若满足,则齐次线性方程组有非零解.,若是一个非零解,,特征向量.,则向量就是的属于的一个,8,设 是一个文字,矩阵称为,称为A的特征多项式.,1.特征多项式的定义,A的特征矩阵,它的行列式,(是数域P上的一个n次多项式),9,矩阵A的特征多项式的根有时也称为A的特征值,注:,若矩阵A是线性变换关于V的一组基的矩阵,,而是的一个特征值,则是特征多项式,的根,即,的一个特征值.,反之,若是A的特征多项式的根,则就是,(所以,特征值也称特征根.),而相应的线性方程组 的非零解也就,称为A的属于这个特征值的特征向量.,10,i)在V中任取一组基 写出
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 特征值 特征向量 高等 代数 课堂 ppt 课件
链接地址:https://www.31ppt.com/p-2064521.html