微电子制造工艺流程ppt课件.ppt
《微电子制造工艺流程ppt课件.ppt》由会员分享,可在线阅读,更多相关《微电子制造工艺流程ppt课件.ppt(83页珍藏版)》请在三一办公上搜索。
1、电子工业专用设备,主讲教师:刘世元教授吴懿平教授办公电话:87548116移动电话:13986163191电子邮件:,机械学院先进制造大楼B310武汉光电国家实验室B102,讲授内容,第一讲:微电子制造工艺流程(回顾)第二讲:微电子制造装备概述光刻工艺及基本原理第三讲:光刻机结构及工作原理(1)第四讲:光刻机结构及工作原理(2),本讲内容:CMOS工艺流程,录像:IC制造工艺CMOS工作原理CMOS工艺流程IC工艺及其分类IC制造厂的工艺分区,CMOS工作原理 (1),回顾录像:IC制造工艺,CMOS = Complementary Metal-Oxide-Semiconductor (Tra
2、nsistor) = 互补金属氧化物半导体(晶体管),N-MOS,P-MOS,n-well,p-well,CMOS工作原理 (2),N-MOS电路 (1),Source = 源,Drain = 漏,Gate = 栅,p-type,n-type,n-type,Metal = 金属,Metal = 金属,CMOS工作原理 (3),N-MOS电路 (2),Source = 源,Drain = 漏,Gate = 栅,CMOS工作原理 (4),N-MOS电路 (3),Source = 源,Drain = 漏,Gate = 栅,CMOS工作原理 (5),N-MOS电路 (4),Source = 源,Dra
3、in = 漏,Gate = 栅,CMOS工作原理 (6),P-MOS电路 (1),Source = 源,Drain = 漏,Gate = 栅,n-type,p-type,p-type,Metal = 金属,Metal = 金属,CMOS工作原理 (7),P-MOS电路 (2),Source = 源,Drain = 漏,Gate = 栅,CMOS工作原理 (8),P-MOS电路 (3),Source = 源,Drain = 漏,Gate = 栅,CMOS工艺流程,1. Shallow Trench Formation2. Well Formation3. Gate Formation4. Sou
4、rce/Drain Formation,5. Salicide Formation6. 1st Interconnect Layer7. 2nd through Nth Interconnect Layers8. Passivation,4. P-MOS Source/Drain Formation,2. n-well formation,2. p-well formation,1. Trench Formation,3. Gate Formation,4. N-MOS Source/Drain Formation,5. Salicide Formation,6&7. Interconnect
5、 Layers,8. Passivation,N-MOS,P-MOS,Starting Point,Starting Point: Pure silicon wafer (heavily-doped) with a lightly-doped epitaxial (Epi) layer.An Epi layer is used to provide a cleaner layer for device formation and to prevent “latch-up” of CMOS transistors.,Silicon Substrate P+,2 microns,725 micro
6、ns,Silicon Epi Layer P-,Epitaxial = 外延淀积 or 外延生长,Shallow Trench Formation,Grow Pad Oxide: A very thin (200A) layer of silicon dioxide (SiO2) is grown on the surface by reacting silicon and oxygen at high temperatures.This will serve as a stress relief layer between the silicon and the subsequent nit
7、ride layer.,Silicon Substrate P+,Silicon Epi Layer P-,Pad Oxide,Thin Film = 薄膜,Deposit Silicon Nitride: A layer (2500A) of silicon nitride (Si3N4) is deposited using Chemical Vapor Deposition. This will serve as a polish stop layer during trench formation.,Silicon Substrate P+,Silicon Epi Layer P-,S
8、ilicon Nitride,CVD = Chemical Vapor Deposition = 化学气相淀积,Pattern Photoresist for Definition of Trenches: One of the most critical patterning steps in the process. 0.5 - 1.0 microns of resist is spun, exposed, and developed.,Silicon Substrate P+,Silicon Epi Layer P-,Silicon Nitride,Photoresist,Trench
9、= 沟槽,Patterning = 图形转移Photoresist = 光刻胶Expose = 曝光Develop = 显影,Etch Nitride and Pad Oxide: A reactive ion etch (RIE) utilizing fluorine chemistry is used.,Silicon Substrate P+,Silicon Epi Layer P-,Silicon Nitride,Photoresist,Etch = 刻蚀RIE = Reactive Ion Etch = 反应离子刻蚀Fluorine = 氟,Etch Trenches in Sili
10、con: A reactive ion etch (RIE) utilizing fluorine chemistry is used. Defines transistor active areas.,Silicon Substrate P+,Silicon Epi Layer P-,Silicon Nitride,Photoresist,Transistor Active Areas,Isolation Trenches,Remove Photoresist: An oxygen plasma is used to burn off the resist layer.,Silicon Su
11、bstrate P+,Silicon Epi Layer P-,Silicon Nitride,Transistor Active Areas,Isolation Trenches,Plasma = 等离子,Future PMOS Transistor,Future NMOS Transistor,Fill Trenches with Oxide: A CVD oxide layer is deposited to conformally fill the trenches. The oxide will prevent “cross-talk” between the transistors
12、 in the circuit.,Silicon Substrate P+,Silicon Epi Layer P-,Silicon Nitride,Future PMOS Transistor,Silicon Dioxide,Future NMOS Transistor,No current can flow through here!,Polish Trench Oxide: The surface oxide is removed using a Chemical Mechanical Polish (CMP). The CMP process is designed to stop o
13、n silicon nitride.,Silicon Substrate P+,Silicon Epi Layer P-,Silicon Nitride,Future PMOS Transistor,Future NMOS Transistor,No current can flow through here!,Polish = 抛光CMP = Chemical Mechanical Polish = 化学机械抛光,Remove Silicon Nitride: A wet etch in hot phosphoric acid (H3PO4) is used, completing form
14、ation of Shallow Trench Isolation (STI).,Silicon Substrate P+,Silicon Epi Layer P-,Future PMOS Transistor,Future NMOS Transistor,Wet Etch = 湿法刻蚀,STI = Shallow Trench Isolation = 浅槽隔离,Well Formation,Pattern Photoresist for N-Well Formation: A non-critical masking layer, utilizing thicker resist to bl
15、ock the implant.,Silicon Substrate P+,Silicon Epi Layer P-,Future PMOS Transistor,Future NMOS Transistor,Photoresist,N-Well = N阱,Implant N-Well: A deep (high-energy) implant of phosphorous ions creates a localized N-type region for the PMOS transistor.,Silicon Substrate P+,Silicon Epi Layer P-,Futur
16、e NMOS Transistor,Photoresist,N- Well,Phosphorous (-) Ions,Ion Implantation = 离子注入,Strip N-Well Photoresist:,Silicon Substrate P+,Silicon Epi Layer P-,Future NMOS Transistor,N- Well,Strip = Remove = 去除,Photoresist,Pattern Photoresist for P-Well Formation: A non-critical masking layer, utilizing thic
17、ker resist to block the implant.,Silicon Substrate P+,Silicon Epi Layer P-,Future NMOS Transistor,N- Well,Implant P-Well: A deep (high-energy) implant of boron ions creates a localized P-type region for the NMOS transistor.,Silicon Substrate P+,Silicon Epi Layer P-,Photoresist,N- Well,Boron (+) Ions
18、,P- Well,Strip P-Well Photoresist:,Silicon Substrate P+,Silicon Epi Layer P-,N- Well,P- Well,Anneal Well Implants: This step repairs damage to the silicon surface caused by the implants and electrically activates the dopants. It also drives the dopants somewhat deeper, but Rapid Thermal Processing i
19、s used to minimize dopant spreading.,Silicon Substrate P+,Silicon Epi Layer P-,P- Well,N- Well,Anneal = 退火RTP = Rapid Thermal Processing = 快速热处理Dopant = 掺杂剂,Gate Formation,Grow Sacrificial Oxide: A thin (250A) oxide layer is grown to capture defects in the silicon surface.,Silicon Substrate P+,Silic
20、on Epi Layer P-,P- Well,N- Well,Sacrificial Oxide,Sacrificial Oxide = 牺牲层氧化硅,Remove Sacrificial Oxide: Sacrificial oxide is immediately removed in a wet HF solution, leaving behind a clean silicon surface.,Silicon Substrate P+,Silicon Epi Layer P-,P- Well,N- Well,Grow Gate Oxide: This is the most cr
21、itical step in the process! A very thin (20-100A) oxide layer is grown that will serve as the gate dielectric for both transistors. It must be extremely clean, and grown to a very precise thickness (+/- 1A).,Silicon Substrate P+,Silicon Epi Layer P-,P- Well,N- Well,Deposit Polysilicon: Polycrystalli
22、ne silicon is deposited using Chemical Vapor Deposition to a thickness of 1500-3000A.,Silicon Substrate P+,Silicon Epi Layer P-,P- Well,N- Well,Polysilicon,Polysilicon = Polycrystalline silicon = 多晶硅,Pattern Photoresist to Define Gate Electrodes: This is the most critical patterning step in the proc
23、ess! Precise sizing of the poly gate length is a first-order determinant of transistor switching speed. The highest-technology patterning systems are used (i.e. DUV) along with thinner-than-normal photoresist due to the critical nature of the layer.,Silicon Substrate P+,Silicon Epi Layer P-,P- Well,
24、N- Well,Photoresist,Channel Length,Polysilicon,DUV = Deep Ultra Violet = 深紫外,Etch Polysilicon and Strip Resist: Reactive Ion Etching using fluorine chemistry is used. This completes the formation of the “gate stack.”,Silicon Substrate P+,Silicon Epi Layer P-,P- Well,N- Well,Oxidize Polysilicon: A th
25、in layer of oxide is grown on top of the polysilicon to act as a buffer between the poly and the subsequent silicon nitride layer.,Silicon Substrate P+,Silicon Epi Layer P-,P- Well,N- Well,Gate Oxide,Poly Gate Electrode,Poly Re-oxidation,Source/Drain Formation,Pattern Photoresist for NMOS Transistor
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微电子 制造 工艺流程 ppt 课件
链接地址:https://www.31ppt.com/p-2022038.html