六章控制器课件.ppt
《六章控制器课件.ppt》由会员分享,可在线阅读,更多相关《六章控制器课件.ppt(112页珍藏版)》请在三一办公上搜索。
1、化工过程自动化,西北民族大学化工学院,6 控制器,6.1 概述6.2 基本控制规律6.3 模拟式控制器6.4 数字式控制器,6.1 概述,控制器是控制系统的核心。6.1.1 控制器的作用6.1.2 控制器的分类,6.1.1 控制器的作用,控制器的作用:控制执行器,改变操纵变量,使被控变量符合生产要求。控制器在闭环控制系统中将检测变送环节传送过来的信息与被控变量的设定值比较后得到偏差,然后根据偏差按照一定的控制规律进行运算,最终输出控制信号作用于执行器上。,6.1.2 控制器的分类,控制器一般可按能源形式、信号类型和结构形式进行分类。(1)按能源形式:电动和气动(2)按信号类型:模拟式和数字式(
2、3)按结构形式:基地式、单元组合式、组装式、集散控制系统,气动控制仪表,气动控制仪表发展较早,其特点是结构简单、性能稳定、可靠性高、价格便宜,且在本质上安全防爆,因此广泛应用于石油、化工等有爆炸危险的场所。,电动控制仪表,电动控制仪表相对气动控制仪表出现得较晚,但由于电动控制仪表在信号的传输、放大、变换处理,实现远距离监视操作等方面比气动仪表容易得多,并且容易与计算机等现代化信息技术工具联用,因此电动控制仪表的发展极为迅速,应用极为广泛。近年来,电动控制仪表普遍采取了安全火花防爆措施,解决了防爆问题,所以在易燃易爆的危险场所也能使用电动控制仪表。目前采用的控制器以电动控制器占绝大多数。,模拟式
3、控制仪表,模拟式控制仪表的传输信号通常是连续变化的模拟量,其线路较为简单,操作方便,在过程控制中已经广泛应用。,数字式控制仪表,数字式控制仪表的传输信号通常是断续变化的数字量,以微型计算机为核心,其功能完善,性能优越,能够解决模拟式仪表难以解决的问题。近二十年来数字式控制仪表不断涌现新品种应用于过程控制中,以提高控制质量。,基地式控制仪表,基地式控制仪表将控制机构与指示、记录机构组成一体,结构简单,但通用性差,使用不够灵活,一般仅用于一些简单控制系统。,单元组合式控制仪表,单元组合式控制仪表是将整套仪表划分成能独立实现某种功能的若干单元,各个单元之间用统一标准信号联系。将各个单元进行不同的组合
4、,可以构成具有各种功能的控制系统,使用灵活方便。目前使用较多的单元组合式控制器属电动型,而在一些老装置上电动型控制器还在使用,气动单元控制器由于控制滞后太大已经很少使用。,组装式控制器,组装式控制器是在单元组合仪表的基础上发展起来的一种功能分离、结构组件化的成套仪表装置。,集散控制系统,随着计算机技术发展,出现了各种以微处理器为基础的控制器,在结构、功能、可靠性等各个方面都使控制器进入一个新阶段。近二十多年来出现了许多基于集散控制系统或者现场总线的控制器,它们除了控制功能外,还具有网络通信等功能,适应信息社会大规模生产需要。,6.2 基本控制规律,6.2.1 基本概念6.2.2 双位控制6.2
5、.3 比例控制(P)6.2.4 比例积分控制(PI)6.2.5 比例微分控制(PD)6.2.6 比例积分微分控制(PID),6.2.1 基本概念,过程控制一般是指连续控制系统,控制器的输出随时间的变化发生连续变化。不管是何种控制器,都有其基本的控制规律。控制规律的定义:是指控制器的输出信号与输入信号之间的关系。控制器的输入信号e(t):是测量值y(t)与被控变量的设定值之差 ,即e(t)=y(t)-r(t);控制器的输出信号:是送往执行机构的控制命令u(t)。,基本的控制规律,研究控制器的控制规律时是把控制器与系统断开的,即只在开环时单独研究控制器本身的特性。在研究控制器的控制规律时,经常是假
6、定控制器的输入信号e是一个阶跃信号,然后来研究控制器的输出信号u(t)随时间的变化规律。 基本的控制规律共有四种,即:位式控制(其中以双位控制比较常见)、比例控制、积分控制、微分控制,以及它们的组合形式。,研究基本的控制规律的意义,不同的控制规律适应不同的生产要求,必须根据生产要求来选用适当的控制规律。如选用不当,不但不能起到好的作用,反而会使控制过程恶化,甚至造成事故。要选用合适的控制器,首先必须了解常用的几种控制规律的特点与适用条件,然后,根据过渡过程品质指标要求,结合具体对象特性,才能做出正确的选择。,举例说明选用控制系统,以蒸汽加热反应釜为例:设反应温度为85,反应过程是轻微放热的,还
7、需要从外界补充一些热量。,双位控制,发现温度一低于85,就把蒸汽阀门全开,一高于85,就全关,这种做法称双位控制,因为阀门开度只有两个位置,全开或全关。可以看到,阀门在全开时,供应的蒸汽量一定多于需要量,因此温度将会上升,超过设定值85;阀门在全关时,供应的蒸汽量一定少于需要量,因此温度将会下降,低于设定值85。有了这一多一少能起到控制温度的作用,然而又使供需一直不平衡,温度波动不可避免,它是一个持续振荡过程。用双位控制规律来控制反应器温度,显然控制质量差,一般不采用。,改进控制方案,若在正常情况下,温度为85,阀门开度是三圈,有人这样做,若温度高于85,每高出5就关一圈阀门;若低于85,每降
8、低5就开一圈阀门。显然,阀门的开启度与偏差成比例关系,用数学公式表示则为:式中y是测量值。,比例控制,比例控制规律模仿上述操作方式,控制器的输出u(t)与偏差e(t)有一一对应关系: u(t)=u(0)+Kce(t) 式中u(t)是比例控制器的输出;u(0)是偏差e为零时的控制器输出,e=y-r;Kc是控制器的比例放大倍数。 比例控制的缺点是在负荷变化时有余差。例如,在这一例子中,如果工况有变动,阀门开三圈,就不再能使温度保持在85。,再次改进控制方案,比例操作方式不能使温度回到设定值,有余差存在。为了消除余差,有人这样做:把阀门开启数圈后,不断观察测量值,若低于85,则慢慢地继续开大阀门;若
9、高于85,则慢慢地把阀门关小,直到温度回到85。与上一方式的基本差别是,这种方式是按偏差来决定阀门开启或关闭的速度,而不是直接决定阀门开启的圈数。,积分控制,积分控制规律就是模仿上述操作方式。控制器输出的变化速度与偏差成正比,即 或 由积分式可看出,只要有偏差随时间而存在,控制器输出总是在不断变化,直到偏差为零时,输出才会稳定在某一数值上。,微分控制,由于温度过程的容量滞后较大,当出现偏差时,其数值已较大,为此,有人再补充这样的经验,观察偏差的变化速度即趋势来开启阀门的圈数,这样可抑制偏差幅度,易于控制。 微分控制规律就是模仿这种操作方式,控制器的输出与偏差变化速度成正比,用数学公式表示为:,
10、6.2.2 双位控制,理想的双位控制器输出与输入偏差之间的关系为:当测量值大于给定值时,控制器的输出为最大(或最小),当测量值小于给定值时,输出值为最小(或最大)。控制器只有两个输出值,相应的执行机构只有开和关两个极限位置。,实际的双位控制,为了降低控制机构的开关频率,延长控制系统中运动部件的使用寿命。给双位控制系统增加了中间区,当偏差在中间区内变化时,控制机构不会动作。,实际的双位控制特性,6.2.3比例控制(P),(1)比例控制规律(2)比例度(3)比例度 对系统过渡过程的影响,(1)比例控制规律,输出信号与输入信号之间的关系为式中: Kc 比例增益,衡量比例控制作用强弱的变量。比例增益K
11、c是控制器的输出变量u(t)与输入变量e(t)之比。Kc越大,在相同偏差e(t)输入下,输出u(t)也越大。控制器的输出变化量与输入偏差成正比例,在时间上没有延滞。,比例控制规律的开环输出特性:,比例增益Kc衡量比例控制作用强弱的变量。在实际中,习惯上使用比例度表示比例控制作用的强弱。,阶跃偏差作用下比例控制器的开环输出特性,(2)比例度,定义:控制器输入的变化相对值与相应的输出变化相对值之比的百分数,表达式为其中:e为控制器输入信号的变化量,即偏差信号; (Zmax-Zmin)为控制器输入信号的变化范围,即量程; u为控制器输出信号的变化量,即控制命令;(umax-umin)为控制器输出信号
12、的变化范围。,比例度的具体意义,可以看出比例度的具体意义为:使控制器的输出变化满刻度时,相应的控制器输入变化量占输入信号变化范围的百分数。即要使输出做全范围变化,输入信号必须改变全量程的百分之几。,比例度示意图,右图是比例度的示意图,当比例度分别为50%、100%、200%时,只要偏差e的变化占输入信号变化范围的50%、100%、200%时,控制器的输出就可以由最小umin 变为最大umax。,比例度示意图,仪表系数,比例度的定义式可改写为C为控制器输出信号的变化范围与输入信号的变化范围之比,称为仪表系数。,比例度与比例增益Kc的关系,由前面得:对于单元组合仪表,有所以,结论,结论:比例度 与
13、放大倍数Kc成反比。比例度越小,放大倍数Kc越大,它将偏差(控制器输入)放大的能力越强,反之亦然。,例题:,一台比例作用的温度控制器,其温度的变化范围为400800,控制器的输出范围是420mA。当温度从600变化到700时,控制器相应的输出从8mA变为12mA,试求该控制器的比例度。,例题求解,解:这说明在这个比例度下,温度全范围变化(相当于400 )时,控制器的输出从最小变为最大,在此区间内,e和u是成比例的。,(3)比例度 对系统过渡过程的影响, 在扰动即设定值变化时有余差存在。 比例度愈大,过渡过程曲线愈平稳,余差也愈大。比例度愈小,过渡过程曲线振荡愈厉害。当比例度减小到某一数值时,系
14、统会出现等幅振荡,此时的比例度称为临界比例度k。 如果较小,振荡频率提高,把被控变量拉回到设定值所需的时间就短。,比例度对过渡过程影响的图解,比例度对过渡过程的影响,比例度 对系统过渡过程的影响(2), 最大偏差在两类外作用下不一样,在扰动作用下,越小,最大偏差越小;在设定作用下且系统处于衰减振荡时,越小,最大偏差却越大。因为最大偏差取决于余差和超调量。在扰动作用下,主要取决于余差,小则余差小,所以最大偏差也小;在设定作用下,最大偏差取决于超调量,小则超调量大,所以最大偏差就大。,比例度对过渡过程影响的图解(2),比例度对过渡过程的影响,选择比例度的原则,一般地,若对象的滞后较小、时间常数较大
15、以及放大倍数较小时,控制器的比例度要小,以提高系统的灵敏度,使反应快些,从而过渡过程的曲线较好。反之,比例度就要大,以保证系统稳定。,比例控制特点,比例控制特点:是最基本、最主要、应用最普遍,它能迅速克服扰动的影响,使系统很快稳定。适用场合:扰动幅度较小、负荷变化不大、过程时滞较小或控制要求不高的场合。,6.2.4 比例积分控制(PI),(1)积分控制规律(2)比例积分控制规律(3)积分时间TI对系统过渡过程的影响(4)积分饱和及防止,(1)积分控制规律,输出u(t)与输入e(t)的关系为其中KI表示积分速度。输出信号的大小不仅与偏差信号的大小有关,而且与偏差信号存在的时间长短有关。只有在偏差
16、信号e等于零的情况下,控制器的输出才能相对稳定。因此,力图消除余差是积分控制作用的重要特性。,阶跃偏差下的开环输出特性:,在幅度为A的阶跃偏差作用下,积分控制器的开环输出特性为 u(t)=KIe(t)dt=KIAt如左图所示,这是一条斜率不变的直线,直到控制器的输出达到最大值或最小值而无法再进行积分为止,输出直线的斜率即输出的变化速度正比于控制器的积分速度KI,即 du(t)/dt=KIA。,阶跃偏差下的开环输出特性,积分作用的落后性:,积分控制作用总是滞后于偏差的存在,所以在工业生产中很少单独使用。常常将比例作用和积分作用相结合组成比例积分控制作用来使用。,积分作用的落后性,(2)比例积分控
17、制规律,是比例作用和积分作用的合成,因此,输出u(t)与输入e(t)的关系为其中:Kce(t)是比例项,(Kc /TI)0te(t)dt是积分项,TI称为积分时间,(Kc /TI)=KI 。,开环输出特性:,在幅度为A的阶跃输入下,比例输出立即跳变到KCA,然后积分输出随时间线性增长,输出特性是一根截距为KCA、斜率为KCA/TI的直线。,积分时间TI,积分时间TI越大,直线越平坦,说明积分作用越弱;TI越小,直线越陡峭,说明积分作用越强。积分时间TI定义:在阶跃偏差作用下,控制器的输出达到比例输出的两倍所经历的时间,就是积分时间TI 。,积分时间TI测定:,将比例度置于100%的刻度上,然后
18、对控制器输入一个幅度为A的阶跃偏差,测出控制器的输出跳变值,同时按秒表计时,等到积分输出与比例输出相同时所经历的时间就是积分时间TI。,(3)积分时间TI对系统过渡过程的影响,在一个纯比例控制的闭环系统中引入积分作用时,若保持控制器的比例度不变,则可从下图所示的曲线族中看到,随着TI减小,则积分作用增强,消除余差较快,但控制系统的振荡加剧,系统的稳定性下降;TI过小,可能导致系统不稳定。TI小,扰动作用下的最大偏差下降,振荡频率增加。,结论:,在比例控制系统中引入积分作用的优点是能够消除余差,然而降低了系统的稳定性;若要保持系统原有的衰减比,必须相应加大控制器的比例度,这会使系统的其它控制指标
19、下降。因此,如果余差不是主要的控制指标,就没有必要引入积分作用。 由于比例积分控制器具有比例和积分控制的优点,有比例度和TI两个参数可供选择,因此适用范围比较宽广,多数控制系统都可以采用。,(4)积分饱和及防止,积分饱和指的是一种积分过量现象。,间歇式反应釜温度控制系统,举例说明(1),在间歇式反应釜温度控制系统中,进料的温度较低,离设定值较远,所以在初始阶段偏差较大,控制器输出会达到积分极限,把加热蒸汽阀开足。当釜内温度达到和开始超出设定值后,蒸汽阀仍不能及时关小,结果使温度大大超出设定值,使动态偏差加大,控制质量变差。,举例(2),举例说明(2),压力放空系统(保证压力不超限)中,设定值为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 控制器 课件
链接地址:https://www.31ppt.com/p-2001913.html