《利用导数判断函数的单调性》ppt课件.ppt
《《利用导数判断函数的单调性》ppt课件.ppt》由会员分享,可在线阅读,更多相关《《利用导数判断函数的单调性》ppt课件.ppt(21页珍藏版)》请在三一办公上搜索。
1、3.3.1利用导数判断函数的单调性,(4).对数函数的导数:,(5).指数函数的导数:,(3).三角函数 :,(1).常函数:(C)/ 0, (c为常数);,(2).幂函数 : (xn)/ nxn1,一复习回顾:1.基本初等函数的导数公式,2.导数的运算法则,(1)函数的和或差的导数 (uv)/u/v/.,(3)函数的商的导数 ( ) / = (v0)。,(2)函数的积的导数 (uv)/u/v+v/u.,函数 y = f (x) 在给定区间 G 上,当 x 1、x 2 G 且 x 1 x 2 时,函数单调性判定,单调函数的图象特征,1)都有 f ( x 1 ) f ( x 2 ),,则 f (
2、 x ) 在G 上是增函数;,2)都有 f ( x 1 ) f ( x 2 ),,则 f ( x ) 在G 上是减函数;,若 f(x) 在G上是增函数或减函数,,增函数,减函数,则 f(x) 在G上具有严格的单调性。,G 称为单调区间,G = ( a , b ),二、复习引入:,(1)函数的单调性也叫函数的增减性;,(2)函数的单调性是对某个区间而言的,它是个局部概 念。这个区间是定义域的子集。,(3)单调区间:针对自变量x而言的。 若函数在此区间上是增函数,则为单调递增区间; 若函数在此区间上是减函数,则为单调递减区间。,以前,我们用定义来判断函数的单调性.在假设x1x2的前提下,比较f(x
3、1)f(x2)与的大小,在函数y=f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小并不很容易.如果利用导数来判断函数的单调性就比较简单.,三、新课讲解:,我们已经知道,曲线y=f(x)的切线的斜率就是函数y=f(x)的导数.,从函数y=x2-4x+3的图像可以看到:,在区间(2,+)内,切线的斜率为正,函数y=f(x)的值随着x的增大而增大,即 0 时,函数y=f(x) 在区间(2, +)内为增函数.,在区间(-,2)内,切线的斜率为负,函数y=f(x)的值随着x的增大而减小,即 0 时,函数y=f(x) 在区间(-,2)内为减函数.,f (x)0,f (x)0,由上我们可得以下的结
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 利用导数判断函数的单调性 利用 导数 判断 函数 调性 ppt 课件
链接地址:https://www.31ppt.com/p-1990467.html