大数据分析概述ppt课件.ppt
《大数据分析概述ppt课件.ppt》由会员分享,可在线阅读,更多相关《大数据分析概述ppt课件.ppt(74页珍藏版)》请在三一办公上搜索。
1、大数据引领我们走向数据智能化时代,大数据分析,大数据的定义理解,大数据时代的背景,半个世纪以来,随着计算机技术全面融入社会生活,信息爆炸已经积累到了一个开始引发变革的程度。它不仅使世界充斥着比以往更多的信息,而且其增长速度也在加快。互联网(社交、搜索、电商)、移动互联网(微博)、物联网(传感器,智慧地球)、车联网、GPS、医学影像、安全监控、金融(银行、股市、保险)、电信(通话、短信)都在疯狂产生着数据。,全球每秒钟发送 2.9 百万封电子邮件,一分钟读一篇的话,足够一个人昼夜不息的读5.5 年每天会有 2.88 万个小时的视频上传到Youtube,足够一个人昼夜不息的观看3.3 年推特上每天
2、发布 5 千万条消息,假设10 秒钟浏览一条信息,这些消息足够一个人昼夜不息的浏览16 年每天亚马逊上将产生 6.3 百万笔订单每个月网民在Facebook 上要花费7 千亿分钟,被移动互联网使用者发送和接收的数据高达1.3EBGoogle 上每天需要处理24PB 的数据,大数据时代的背景,20世纪90年代,数据仓库之父的Bill Inmon就经常提及Big Data。,2011年5月,在“云计算相遇大数据”为主题的EMC World 2011 会议中,EMC 抛出了Big Data概念。,大数据时代的背景,体量Volume,多样性Variety,价值密度Value,速度Velocity,非结
3、构化数据的超大规模和增长占总数据量的8090%比结构化数据增长快10倍到50倍是传统数据仓库的10倍到50倍,大数据的异构和多样性很多不同形式(文本、图像、视频、机器数据)无模式或者模式不明显不连贯的语法或句义,大量的不相关信息对未来趋势与模式的可预测分析深度复杂分析(机器学习、人工智能Vs传统商务智能(咨询、报告等),实时分析而非批量式分析数据输入、处理与丢弃立竿见影而非事后见效,大数据的4V特征,“大量化(Volume)、多样化(Variety)、快速化(Velocity)、价值密度低(Value)”就是“大数据”的显著特征,或者说,只有具备这些特点的数据,才是大数据。,Value 价值,
4、挖掘大数据的价值类似沙里淘金,从海量数据中挖掘稀疏但珍贵的信息.价值密度低,是大数据的一个典型特征.,2010年海地地震,海地人散落在全国各地,援助人员为弄清该去哪里援助手忙脚乱。传统上,他们只能通过飞往灾区上空来查找需要援助的人群。 一些研究人员采取了一种不同的做法:他们开始跟踪海地人所持手机内部的SIM卡,由此判断出手机持有人所处的位置和行动方向。正如一份联合国(UN)报告所述,此举帮助他们“准确地分析出了逾60万名海地人逃离太子港之后的目的地。”后来,当海地爆发霍乱疫情时,同一批研究人员再次通过追踪SIM卡把药品投放到正确的地点,阻止了疫情的蔓延。,Variety 多样性,企业内部的经营
5、交易信息;物联网世界中商品,物流信息;互联网世界中人与人交互信息,位置信息等是大数据的主要来源. 文本/图片/视频 等非结构化/半结构化数据能够在不同的数据类型中,进行交叉分析的技术,是大数据的核心技术之一.语义分析技术,图文转换技术,模式识别技术,地理信息技术等,都会在大数据分析时获得应用.,非结构化数据,相对于结构化数据而言,不方便用数据库二维逻辑表来表现的数据即称为非结构化数据,包括所有格式的办公文档、文本、图片、XML、HTML、各类报表、图像和音频/视频信息等等。,Velocity 速度,1s 是临界点.对于大数据应用而言,必须要在1秒钟内形成答案,否则处理结果就是过时和无效的.实时
6、处理的要求,是区别大数据引用和传统数据仓库技术,BI技术的关键差别之一.,Volume 数据量,PB是大数据層次的临界点. KB-MB-GB-TB-PB-EB-ZB-YB-NB-DB,大数据不仅仅是“大”,多大?PB 级,比大更重要的是数据的复杂性,有时甚至大数据中的小数据如一条微博就具有颠覆性的价值,指数型增长的海量数据,所有研究都表明,未来数年数据量会呈现指数增长。根据麦肯锡全球研究院(MGI)估计,全球企业2010年在硬盘上存储了超过7EB(1EB等于10亿GB)的新数据,而消费者在PC和笔记本等设备上存储了超过6EB新数据。1EB数据相当于美国国会图书馆中存储的数据的4000多倍。事实
7、上,我们如今产生如此多的数据,以至于根本不可能全部存储下来。例如,医疗卫生提供商会处理掉他们所产生的90%的数据(比如手术过程中产生的几乎所有实时视频图像)。,大数据 = 海量数据 + 复杂类型的数据,海量交易数据:企业内部的经营交易信息主要包括联机交易数据和联机分析数据,是结构化的、通过关系数据库进行管理和访问的静态、历史数据。通过这些数据,我们能了解过去发生了什么。,大数据包括:交易数据和交互数据集在内的所有数据集,海量交互数据:源于各种网络和社交媒体。它包括了呼叫详细记录、设备和传感器信息、GPS和地理定位映射数据、通过管理文件传输协议传送的海量图像文件、Web文本和点击流数据、评价数据
8、、科学信息、电子邮件等等。可以告诉我们未来会发生什么。,大数据的构成,大数据的技术与应用,Volume海量的数据规模,Variety多样的数据类型,Value,Velocity快速的数据流转,发现数据价值,大数据技术要解决的问题,软件是大数据的引擎,和数据中心(Data Center) 一样,软件是大数据的驱动力.软件改变世界!,大数据生态:软件是引擎,大数据技术被设计用于在成本可承受的条件下,通过非常快速(velocity)地采集、发现和分析,从大量(volumes)、多类别(variety)的数据中提取价值(value),将是IT 领域新一代的技术与架构。,大数据技术要解决的问题,技术领域
9、的挑战,1、对现有数据库管理技术的挑战传统的数据库部署不能处理数TB 级别的数据,也不能很好的支持高级别的数据分析。急速膨胀的数据体量即将超越传统数据库的管理能力。如何构建全球级的分布式数据库(Globally-Distributed Database) ,可以扩展到数百万的机器,数已百计的数据中心,上万亿的行数据。2、经典数据库技术并没有考虑数据的多类别(variety)SQL(结构化数据查询语言),在设计的一开始是没有考虑非结构化数据的。3、实时性的技术挑战:一般而言,像数据仓库系统、BI应用,对处理时间的要求并不高。因此这类应用往往运行1、2天获得结果依然可行的。但实时处理的要求,是区别
10、大数据应用和传统数据仓库技术、BI技术的关键差别之一。,网络架构、数据中心、运维的挑战:,技术架构的挑战:,人们每天创建的数据量正呈爆炸式增长,但就数据保存来说,我们的技术改进不大,而数据丢失的可能性却不断增加。如此庞大的数据量首先在存储上就会是一个非常严重的问题,硬件的更新速度将是大数据发展的基石。,分析技术:数据处理:自然语言处理技术统计和分析:A/B test; top N排行榜;地域占比;文本情感分析数据挖掘:关联规则分析;分类;聚类模型预测:预测模型;机器学习;建模仿真大数据技术:数据采集:ETL工具数据存取:关系数据库;NoSQL;SQL等基础架构支持:云存储;分布式文件系统等计算
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据 分析 概述 ppt 课件
链接地址:https://www.31ppt.com/p-1971435.html