一次函数教材分析ppt课件.ppt
《一次函数教材分析ppt课件.ppt》由会员分享,可在线阅读,更多相关《一次函数教材分析ppt课件.ppt(52页珍藏版)》请在三一办公上搜索。
1、人教版八年级上册数学第十四章,一次函数教材分析,第十四章:一次函数,1、本章知识结构,2、本章地位作用,4、数学课程标准对本章的要求,5、本章教学目标,6、本章教学重点、难点,7、本章教学内容课时安排,8、课时教材分析,3、本章教材编写特点,9、本章教学教学建议,本章知识结构框图,基础,重点,引申 难点,本章地位与作用 1函数是数学的重要内容之一,初中函数是对初中数学知识的概括和总结,也是进一步学习高中知识的基础,它是联系初、高中数学知识的纽带,是变量数学在初中数学的渗透。函数的基础知识在数学及相近学科中也有广泛的应用,函数可以使学生认识到知识形成的过程,为学生提供一个发挥、探索和创造的空间背
2、景,从此函数将把学生带到一个宏伟、壮观的数学空间。,2在现实生活中,函数知识能帮助我们解决许多问题,应用非常广泛,函数的图象在物理、化学相近学科中用处很大,函数知识能解决生活中的许多热点问题。本章学习的一次函数为以后学习其他函数提供了思路和方法,它是中考中必考的内容。 3函数的概念是数学中极为重要的基本概念,它的抽象性较强,接受并理解它有一定难度,这也是本章的难点 变化与对应的思想体现在函数概念之中,用运动变化的眼光,以函数为工具,从数量关系和图象两方面动态地分析问题,是本章学习的特点,教材的编写特点:1加强了与实际的联系,体现数学建模思想(1)从实际出发引入有关内容。,(2)突出了看图、识图
3、、从图象中获取信息等这些与日常生活密切相关的知识。,(3)运用有关内容解决实际问题,让学生用适当的函数表示法刻画某些实际问题中变量之间的关系。,2加强了知识间的联系,体会函数观点的统领作用。 在这一章中,专门安排“用函数观点看方程(组)与不等式”一节,分别探讨一次函数与一元一次方程,一次函数与一元一次不等式,一次函数与二元一次方程(组)之间的关系。这样就可以让学生发现一次函数,一元一次方程,一元一次不等式之间的联系,用函数的观点把互相联系的方程(组)、不等式、函数统一起来。,3分阶段地完成初中代数的教学,让学生逐步深化认识函数 本章是学习函数的第一阶段,其教学目标如前所述,重点在于初步认识函数
4、概念,并具体讨论最简单的初等函数一次函数。本章教科书力求能在具体的数学内容中渗透体现变化与对应的思想,使学生能潜移默化地感触体会函数内容中最基本的东西,在对数学思想方法的学习方面有所收获。,4从特殊到一般地认识一次函数 教科书对本章重点内容的安排是按照人们认识事物往往经历“从特殊到一般”这样的过程展现的。,数学课程标准对本章的要求,一、函数 1、通过简单实例,了解常量、变量的意义。 2、能结合实例,了解函数的概念和三种表示方法,能举出函数的实例。 3、能结合图象对简单实际问题中的函数关系进行分析。4、能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值。5、能用适当的函
5、数表示法刻画某些实际问题中变量之间的关系。 6、结合对函数关系的分析,尝试对变量的变化规律进行初步预测。,二、一次函数 1、结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。 2、会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k0)探索并理解其性质(k0或k0时,图象的变化情况)。 3、理解正比例函数、一次函数的性质。 4、能根据一次函数的图象求二元一次方程组的近似解。 5、能用一次函数解决实际问题。,本章教学目标,知识与技能目标:1、初步掌握函数概念,能判断两个变量间的关系是否可看做函数,初步形成学生利用函数的观点认识世界的意识与能力。2、理解一次函数和正比例
6、函数的概念,能根据所给条件写简单的一次函数表达式,发展学生的数学应用能力。3、能熟练作出一次函数的图象,提炼出一次函数的相关性质并加以应用。4、掌握确定一次函数表达式的基本方法,并能解决有关实际问题。5、初步体会方程与函数的关系,建立良好的知识联系。,本章教学目标,过程与方法目标:1、经历函数,一次函数等概念的抽象概括过程,体会函数的模型思想,进一步发展学生的抽象思维能力。2、经历利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力。3、经历函数图象信息的识别与应用过程,发展学生的形象思维能力。,本章教学目标,情感态度与价值观目标:1、经历一次函数的图象及其基本性质的探索过程,在合作
7、与交流活动中发展学生的合作意识和能力。2、初步学会应用函数的思想解决实际问题,体会数学的应用价值,培养数学的应用能力。3、通过对函数不同的表述方式的学习,经历从不同角度去观察、分析、思考、体验解决问题策略的多样性,并在与他人交流的过程中,敢于发表自己的不同见解,在交流活动中获得成功的体验。,本章教学重点、难点,本章的重点:1、认识和理解函数概念,一次函数的图象和性质,一次函数的应用。2、一次函数的定义、图象与性质。3、一次函数的应用。本章的难点:1、准确理解函数的概念。2、利用一次函数及其图像解决实际问题。,本章教学内容课时安排:(约15课时),141 变量与函数5课时 14.1.1 变量(1
8、课时) 14.1.2 函数(12课时) 14.1.3 函数的图象(23课时),14.2 一次函数 5课时 14.2.1 正比例函数(1课时) 14.2.2 一次函数(4课时),14.3 用函数观点看方程(组)与不等式 3课时 14.3.1 一次函数与一元一次方程(1课时) 14.3.2 一次函数与一元一次不等式(1课时) 14.3.3 一次函数与二元一次方程(组)(1课时),数学活动、小结 2课时,课时教材分析,14.1.1 变量,这节课的主要内容是变量与常量的概念。教材中用了5个生活中问题,这5个问题中都含有变量之间的单值对应关系,引出常量与变量的概念。,重点给学生讲清楚以下几个方面:1变量
9、与常量必须存在于同一个变化过程中,且要根据量的“变”与“不变”来确定这两个量。2变量和常量是相对的,相对于某个变化过程,比如路程、速度、时间这三者,在不同的研究过程中作为变量与常量的身份是可以相互转换的。,3常量是在整个变化过程中保持不变的量,不要认为式子中出现字母就是变量,如:当高h一定时,三角形的面积S与底边长a的关系式 中h是一个固定的长度,是一个常量。,5.在某一个具体问题中,用一个量的式子去表示另一个量,常常要用列方程思想,实际上是根据题意,列出关于这两个量的等量关系,要注意弄清到底用哪个量表示哪个量,通常被表示的那个量写在等式左边。,4圆周率是常量。,14.1.2 函数(12课时)
10、,函数概念是这节课的重点,而准确理解函数概念是本节也是本章的难点。,突破难点的办法是由具体例子逐步过渡到抽象定义.,应通过大量的实例来让学生思考反映不同事物变化过程的一些问题,让学生通过对多个问题的分析,归纳出各问题中都具有相关的两个变量,这样的变量间都具有一个随另一个而变,而且对应值是唯一确定的这种对应关系,在具体经验积累到一定程度的基础上,再给出定义.,讲解函数概念,要注意以下三点:1、在一个变化过程中有两个变量。2、一个变量的数值随另一个变量的数值变化而变化。3、自变量每一个确定值,函数有一个并且只有一个值与之对应。,函数不是数,它是指某一变化过程中两个变量之间的关系。,1、两个变量之间
11、的关系:,自身先改变的是自变量,随之而变的是函数。学生开始学习本节时,对于常量与变量比较容易区分,但是对于函数与函数值可能发生混淆,教学中需要引导学生认识到两者的区别,函数是变量,函数值是变量所取的某个具体数值,一个函数可能有许多不同的函数值,教学中可以通过具体例子学生提高分辨能力。,2、自变量的取值范围,函数自变量取值范围的求法:(1)分母不为0;(2)开偶次方根的被开方数大于等于0;(3)使实际问题有意义。,14.1.3 函数的图象(23课时),本节内容是关于函数的最基础的知识,对后续内容有很深远的影响。,学习函数图象的画法,一个重要的目的,就是让学生通过画图,进一步体会函数图象的意义,从
12、而能够利用函数的图像研究函数的性质,进而解决实际问题。 画函数图象一直是学生学习的难点。,函数的图象是由平面直角坐标系中的一系列的点组成的图形,而图象上每一个点的坐标(x,y)代表了函数的一对对应值,它的横坐标x表示自变量的某一值,纵坐标y表示与它对应的函值。它形象直观地反映了两个变量之间的对应关系。,一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横坐标与纵坐标,那么坐标平面内由这些点组成的图象,就是这个函数的图象。,第一节:画函数图象,教学中值得注意的问题:(1)要带着学生一起画图,让学生经历列表、描点、连线等绘制函数图象的具体过程。,(2)画图象每一步应注意的问题:,应先
13、确定函数自变量的取值范围,列表时选值要恰当,要具有代表性,有利于我们正确而方便地画图,并能看到图的整个变化趋势,通常把自变量x的值放在表中的第一行,其对应函数值放在第二行,其中的x值从小到大,另外计算要准确。,描点时应以表中每对对应值为坐标,在平面直角坐标系内描出相应的点,要找准点的位置,并要使点的位置清晰,以便连线。,连线时要注意图象的走势,必须按照自变量由小到大(或由大到小)的顺序,并且要用平滑的曲线连接。,(3)给学生解释,我们画出的函数图像,一般只是局部的近似图象,描出的点越多,图象越精确而有时要根据自变量的取值范围去确定连线是是否应该出头。,(4)最后归纳总结出: 描点法画函数图象的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一次 函数 教材 分析 ppt 课件

链接地址:https://www.31ppt.com/p-1970500.html