人教版九年级上册数学21.3实际问题与一元二次方程ppt课件(3课时).ppt
《人教版九年级上册数学21.3实际问题与一元二次方程ppt课件(3课时).ppt》由会员分享,可在线阅读,更多相关《人教版九年级上册数学21.3实际问题与一元二次方程ppt课件(3课时).ppt(49页珍藏版)》请在三一办公上搜索。
1、,21.3 实际问题与一元二次方程,第二十一章 一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,第1课时 传播问题与一元二次方程,义务教育教科书(RJ)九上数学课件,1.会分析实际问题(传播问题)中的数量关系并会列一元二次方程.(重点)2.正确分析问题(传播问题)中的数量关系.(难点)3.会找出实际问题(传播问题等)中的相等关系并建模解决问题.,导入新课,图片引入,传染病,一传十, 十传百 ,讲授新课,问题1 有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?,分析 :设每轮传染中平均一个人传染了x个人. 传染源记作小明,其传染示意图如下:,合作探究,
2、第2轮,小明,1,2,x,第1轮,第1轮传染后人数x+1,小明,第2轮传染后人数x(x+1),注意:不要忽视小明的二次传染,x1= ,x2= .,根据示意图,列表如下:,解方程,得,答:平均一个人传染了_个人.,10,-12,(不合题意,舍去),10,解:设每轮传染中平均一个人传染了x个人.,(1+x)2=121,注意:一元二次方程的解有可能不符合题意,所以一定要进行检验.,1+x=(1+x)1,1+x+x(1+x)=(1+x)2,想一想 如果按照这样的传染速度,三轮传染后有多少人患流感?,第2种做法 以第2轮传染后的人数121为传染源,传染一次后就是:121(1+x)=121(1+10)=1
3、331人.,分析,第1种做法 以1人为传染源,3轮传染后的人数是:(1+x)3=(1+10)3=1331人.,(1+x)3,列一元二次方程解应用题时,要注意应用题的内在数量关系,选择适当的条件列代数式,选择剩下的一个关系列方程. 在解出方程后要注意检验结果符不符合题意或实际情况,要把不符合实际情况的方程的根舍去.,总结归纳,例1 某种电脑病毒传播速度非常快,如果一台电脑被感染,经过两轮感染后就会有 100 台电脑被感染请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,4 轮感染后,被感染的电脑会不会超过 7000 台?,解:设每轮感染中平均一台电脑会感染 x 台
4、电脑,则1xx(1x)100,即(1x)2100.解得 x19,x211(舍去)x9.,4 轮感染后,被感染的电脑数为(1x)41047000.,答:每轮感染中平均每一台电脑会感染 9 台电脑,4 轮感染后,被感染的电脑会超过 7000 台,典例精析,1.元旦将至,九年级一班全体学生互赠贺卡,共赠贺卡1980张,问九年级一班共有多少名学生?设九年级一班共有x名学生,那么所列方程为( ) A.x2=1980 B. x(x+1)=1980 C. x(x-1)=1980 D.x(x-1)=19802.有一根月季,它的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干、小分支的总数是7
5、3,设每个枝干长出x个小分支,根据题意可列方程为( ) A.1+x+x(1+x)=73 B.1+x+x2=73 C.1+x2 =73 D.(1+x)2=73,当堂练习,D,B,3.一个两位数,十位上的数字与个位上的数字之和为5,把这个数的个位数字与十位数字对调后,所得的新数与原数的积为736,求原数.,解:设原数的个位上数字为x,十位上的数字为(5-x),则原数表示为10(5-x)+x,对调后新数表示为10 x+(5-x), 根据题意列方程得,10(5-x)+x 10 x+(5-x)=736.,化简整理得,x2-5x+6=0,,解得,x1=3,x2=2.,所以这个两位数是32或23.,4.甲型
6、流感病毒的传染性极强,某地因1人患了甲型流感没有及时隔离治疗,经过两天的传染后共有9人患了甲型流感,每天平均一个人传染了几人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型流感?,解:设每天平均一个人传染了x人,,解得 x1=-4 (舍去),x2=2.,答:每天平均一个人传染了2人,这个地区一共将会有2187人患甲型流感.,1+x+x(1+x)=9,,即(1+x)2=9.,9(1+x)5=9(1+2)5=2187,,(1+x)7= (1+2)7=2187.,5.要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排15场比赛,应邀请多少个球队参加比赛?,
7、答:应邀请6支球队参赛.,解:设应邀请x支球队参赛,由题意列方程得,化简为,x2-x=30,,解得,x1=-5 (舍去),x2=6.,课堂小结,列一元二次方程解应题,与列一元一次方程解决实际问题基本相同.不同的地方是要检验根的合理性.,传播问题,数量关系:第一轮传播后的量=传播前的量 (1+传播速度)第二轮传播后的量=第一轮传播后的量 (1+传播速度)=传播前的量 (1+传播速度)2,数字问题,握手问题,送照片问题,关键要设数位上的数字,要准确地表示出原数.,甲和乙握手与乙和甲握手在同一次进行,所以总数要除以2.,甲送乙照片与乙送甲照片是要两张照片,故总数不要除以2.,步骤,类型,见本课时练习
8、,课后作业,谢谢!,21.3 实际问题与一元二次方程,第二十一章 一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,第2课时 平均变化率问题与一元二次方程,义务教育教科书(RJ)九上数学课件,1.掌握建立数学模型以解决增长率与降低率问题.(重点)2.正确分析问题中的数量关系并建立一元二次方程模型.(难点),导入新课,问题引入,小明学习非常认真,学习成绩直线上升,第一次月考数学成绩是80分,第二次月考增长了10%,第三次月考又增长了10%,问他第三次数学成绩是多少?,讲授新课,填空: 1. 前年生产1吨甲种药品的成本是5000元,随着生产技术的进步,去年生产1吨甲种药品的成本是4650 元,
9、则下降率是 .如果保持这个下降率,则现在生产1吨甲种药品的成本是 元.,探究归纳,7%,4324.5,下降率=,下降前的量-下降后的量,下降前的量,2. 前年生产1吨甲种药品的成本是5000元,随着生产技术的进步,设下降率是x,则去年生产1吨甲种药品的成本是 元,如果保持这个下降率,则现在生产1吨甲种药品的成本是 元.,下降率x,第一次降低前的量,5000(1-x),第一次降低后的量,5000,下降率x,第二次降低后的量,第二次降低前的量,5000(1-x)(1-x),5000(1-x)2,5000(1-x),5000(1-x)2,例1 前年生产1吨甲种药品的成本是5000元,随着生产技术的进
10、步,现在生产1吨甲种药品的成本是3000元,试求甲种药品成本的年平均下降率是多少?,典例精析,解:设甲种药品的年平均下降率为x.根据题意,列方程,得,5 000 ( 1x )2 = 3000,,解方程,得,x10.225,x21.775.,根据问题的实际意义,甲种药品成本的年平均下降率约为22.5.,下降率不能超过1.,练一练 前年生产1吨乙种药品的成本是6000元.随着生产技术的进步,现在生产1吨乙种药品的成本是3600元,试求乙种药品成本的年平均下降率?,解:设乙种药品的年平均下降率为y.根据题意,列方程,得,6 000 ( 1y )2 = 3 600.,解方程,得,y10.225,y21
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 上册 数学 21.3 实际问题 一元 二次方程 ppt 课件 课时
链接地址:https://www.31ppt.com/p-1935032.html