圆锥曲线总复习ppt课件.ppt
《圆锥曲线总复习ppt课件.ppt》由会员分享,可在线阅读,更多相关《圆锥曲线总复习ppt课件.ppt(20页珍藏版)》请在三一办公上搜索。
1、圆锥曲线的综合复习,一、知识结构,椭圆,圆锥曲线,双曲线,抛物线,椭圆的定义,标准方程,标准方程,双曲线的定义,抛物线的定义,几何性质,几何性质,几何性质,标准方程,第二定义,第二定义,综合应用,统一定义,x,y,x,y,二、重点知识提要,F,F,F,A,B,A,B,A,B,双曲线,抛物线,椭 圆,3、判断曲线的类型,三、思想方法总结,1、待定系数法是求椭圆、双曲线、抛物线方程的一个基本方法。 2、直线和圆锥曲线的位置关系,可转化为直线和圆锥曲线的方程的公共解问题,体现了方程的思想。数形结合也是解决直线和圆锥曲线位置的常用方法。 3、一些最值问题常用函数思想,运用韦达定理求弦的中点和弦长问题,
2、是经常使用的方法。 4、坐标法是研究曲线的重要方法,学会如何利用曲线的方程讨论曲线的几何性质,以及用坐标法证明简单的几何问题等。,问 题,1、求轨迹方程的常用方法?,直接法、定义法、相关点法、几何法、参数法。,2、直线与圆锥曲线的位置关系怎样(分椭圆、双曲线、抛物线讨论)?,基础训练(1),2、P是双曲线 上任意一点,O为原点,则OP线段中点Q的轨迹方程是( )A. B. C. D.,3、和圆 外切,且和x轴相切和动圆圆心O和轨迹方程是_.,D,B,例题分析之一,(2)若P为上述曲线上任意一点,M为线段PF上一点,且 ,求点M的轨迹方程。,例二、设椭圆与双曲线有共同的焦点F1(-4,0), F
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 复习 ppt 课件

链接地址:https://www.31ppt.com/p-1931201.html