弹性力学 ppt课件.ppt
《弹性力学 ppt课件.ppt》由会员分享,可在线阅读,更多相关《弹性力学 ppt课件.ppt(164页珍藏版)》请在三一办公上搜索。
1、第一节 平面应力问题和平面应变问题,第二节 平衡微分方程,第三节 平面问题中一点的应力状态,第四节 几何方程 刚体位移,第五节 物理方程,第六节 边界条件,第二章 平面问题的基本理论,第七节 圣维南原理及其应用,第八节 按位移求解平面问题,第九节 按应力求解平面问题 相容方程,第十节 常应力情况下的简化 应力函数,第二章 平面问题的基本理论,弹性力学平面问题共有应力、应变和位移8个未知函数,且均为 。,2-1平面应力问题和平面应变问题,弹性力学空间问题共有应力、应变和位移15个未知函数,且均为 ;,平面应力,(4)约束作用于板边,平行于板的中面,沿板厚不变。,(3)面力作用于板边,平行于板的中
2、面,沿板厚不变;,(2)体力作用于体内,平行于板的中面,沿板厚不变;,条件是:,第一种:平面应力问题,平面应力,(1)等厚度的薄板;,坐标系如图选择。,平面应力,简化为平面应力问题:,故只有平面应力 存在。,由于薄板很薄,应力是连续变化的,又无z向外力,可认为:,平面应力,(1)两板面上无面力和约束作用,故,所以归纳为平面应力问题:a.应力中只有平面应力 存在;b.且仅为 。,平面应力,(2)由于板为等厚度,外力、约束沿z向不变,故应力 仅为 。,如:弧形闸门闸墩,计算简图:,平面应力,深梁,计算简图:,F,因表面无任何面力,,平面应力,A,B,例题1:试分析AB薄层中的应力状态。,故接近平面
3、应力问题。,故表面上,有:,在近表面很薄一层内:,(2)体力作用于体内,平行于横截面,沿柱体长度方向不变;,平面应变,第二种:平面应变问题,条件是:,(1)很长的常截面柱体;,(3)面力作用于柱面,平行于横截面,沿柱体长度方向不变;,(4)约束作用于柱面,平行于横截面,沿柱体长度方向不变。,坐标系选择如图:,平面应变,对称面,故任何z 面(截面)均为对称面。,平面应变,(1)截面、外力、约束沿z 向不变,外力、约束 平行xy面,柱体非常长;,简化为平面应变问题:,(2)由于截面形状、体力、面力及约束沿 向均不变,故应力、应变和位移均为 。,平面应变,所以归纳为平面应变问题: a.应变中只有平面
4、应变分量 存在; b.且仅为 。,平面应变,例如:,平面应变,隧道,挡土墙,o,y,x,y,o,x,且仅为 。,故只有 ,,本题中:,平面应变,ox,y,z,例题2:试分析薄板中的应变状态。,故为平面应变问题。,22平衡微分方程,定义,平衡微分方程-表示物体内任一点的微分体的平衡条件。,在任一点(x,y)取出一微小的平行六面体 ,作用于微分体上的力:,体力: 。,定义,应力:作用于各边上, 并表示出正面上 由坐标增量引起 的应力增量。,应用的基本假定:,连续性假定应力用连续函数来表示。,小变形假定用变形前的尺寸代替变 形后的尺寸。,列出平衡条件:,合力 = 应力面积,体力体积; 以正向物理量来
5、表示。平面问题中可列出3个平衡条件。,平衡条件,其中一阶微量抵消,并除以 得:,,同理可得:,平衡条件,当 时,得切应力互等定理,得,平衡条件, 适用的条件-连续性,小变形;,说明,对平衡微分方程的说明:, 代表A中所有点的平衡条件, 因位( ,)A;, 应力不能直接求出;, 对两类平面问题的方程相同。,理论力学考虑整体 的平衡(只决定整体的运动状态)。,说明,比较:,材料力学考虑有限体 的平衡(近似)。,弹性力学考虑微分体 的平衡(精确)。,当 均平衡时,保证 , 平衡;反之则不然。,说明,所以弹力的平衡条件是严格的,并且是精确的。,理力( V ),材力( ),弹力( ),h,V,dx,dy
6、,dx,思考题,1.试检查,同一方程中的各项,其量纲 必然相同(可用来检验方程的正确性)。2.将条件 ,改为对某一角点的 ,将得出什么结果?3.微分体边上的应力若考虑为不均匀分布, 将得出什么结果?,已知坐标面上应力 , 求斜面上的应力。,问题的提出:,23平面问题中一点的应力状态,问题,求解:取出一个三角形微分体(包含 面, 面, 面), 边长,问题,斜面应力表示:,由平衡条件,并略去高阶分量体力项,得,(1)求( , ),(a),斜面应力,其中:l=cos(n,x), m=cos(n,y)。,(2)求( ),将 向法向,切向投影,得,斜面应力,设某一斜面为主面,则只有由此建立方程,求出:,
7、(3)求主应力,斜面应力,(c),将x,y放在 方向,列出任一斜面上应力公式,可以得出(设 ),(4)求最大,最小应力,最大,最小应力,说明:以上均应用弹力符号规定导出。,(d),几何方程表示任一点的微分线段 上形变与位移之间的关系。,24几何方程刚体位移,定义,变形前位置: 变形后位置: 各点的位置如图。,通过点P(x,y)作两正坐标向的微分线段,定义,应用基本假定:连续性;小变形。,当很小时,,假定,假定,由位移求形变:,PA 线应变,PA 转角,PB 线应变,PB 转角,同理,, 适用于区域内任何点,因为(x,y) A;,对几何方程的说明:,所以平面问题的几何方程为:,说明, 适用条件:
8、a.连续性;b.小变形。, 应用小变形假定,略去了高阶小量 线性的几何方程;, 几何方程是变形后物体连续性条件 的反映和必然结果。, 形变和位移之间的关系: 位移确定 形变完全确定:,从物理概念看,各点的位置确定,则微分线段上的形变确定 。,说明,从数学推导看,位移函数确定,则其导数(形变)确定 。,从物理概念看, , 确定,物体还可作刚体位移。,从数学推导看, , 确定,求位移是积分运算,出现待定函数。,形变确定,位移不完全确定:,形变与位移的关系,由 ,两边对y积分,,由 ,两边对x积分,,例:若 ,求位移:,形变与位移的关系,代入第三式,分开变量,,因为几何方程第三式对任意的(x,y)均
9、应满足。当x(y)变化时,式(b)的左,右均应=常数 ,由此解出 。可得,形变与位移的关系,物理意义:,形变与位移的关系,表示物体绕原点的刚体转动。,表示x,y向的刚体平移,,结论,形变确定,则与形变有关的位移可以确定,而与形变无关的刚体位移则未定。须通过边界上的约束条件来确定 。,思考题,当应变为常量时, 试求出对应的位移分量。,物理方程表示(微分体上)应力和形变 之间的物理关系。,定义,即为广义胡克定律:,25物理方程,物理方程的说明:,说明, 正应力只与线应变有关;切应力只与切 应变有关。, 是线性的代数方程;, 是总结实验规律得出的;, 适用条件理想弹性体;,物理方程的两种形式: 应变
10、用应力表示,用于 按应力求解; 应力用应变(再用位移表示) 表示,用于按位移求解。,说明,平面应力问题的物理方程:,代入 ,得:,在z方向,平面应力,代入 得,平面应变问题的物理方程,平面应变,在z方向,,平面应力物理方程平面应变物理方程:,变换关系:,平面应变物理方程平面应力物理方程:,思考题,1.试证:由主应力可以求出主应变,且两者方向一致。 2.试证:3个主应力均为压应力,有时可以产生拉裂现象。 3.试证:在自重作用下,圆环(平面应力问题)比圆筒(平面应变问题)的变形大。,位移边界条件 设在 部分边界上给定位移分量 和 ,则有,(在 上)。(a),定义,边界条件 表示在边界上位移与约束,
11、或应力与面力之间的关系。,位移边界条件,26边界条件, 若为简单的固定边, 则有,位移边界条件的说明:,(在 上)。(b), 它是在边界上物体保持连续性的条 件,或位移保持连续性的条件。, 它是函数方程,要求在 上每一点 , 位移与对应的约束位移相等。,在23 中,通过三角形微分体的平衡条件,导出坐标面应力与斜面应力的关系式,,应力边界条件设在 上给定了面力分 量,(在A中)。(c),应力边界条件,将此三角形移到边界上,并使斜面与边界面重合,则得应力边界条件:, 它是边界上微分体的静力平衡条件;,说明,应力边界条件的说明:, 式(c)在A中每一点均成立,而 式(d)只能在边界 s上成立;, 它
12、是函数方程,要求在边界上每一点s 上均满足,这是精确的条件;, 所有边界均应满足,无面力的边界 (自由边) 也必须满足。, 式(d)中, 按应力符号规定, , 按面力符号规定;, 位移,应力边界条件均为每个边界两 个,分别表示 , 向的条件;,说明,若x=a为正x 面,l = 1, m = 0, 则式(d)成为,当边界面为坐标面时,,坐标面,若x=-b为负x 面,l = -1, m = 0 , 则式(d)成为,应力边界条件的两种表达式:,两种表达式, 在同一边界面上,应力分量应等于对 应的面力分量(数值相等,方向一 致)。即在同一边界面上,应力数值应 等于面力数值(给定),应力方向应同面 力方
13、向(给定)。, 在边界点取出微分体,考虑其平衡条 件,得式(d)或(e),(f );,在斜面上, 在坐标面上,由于应力与面力的符号规定不同,故式(e),(f )有区别。,例如:,两种表达式,例1列出边界条件:,例2列出边界条件:,显然,边界条件要求在 上, 也成抛物线分布。, 部分边界上为位移边界条件,另一部分边界上为应力边界条件;,混合边界条件,混合边界条件:, 同一边界上,一个为位移边界条件,另一个为应力边界条件。,例3列出 的边界条件:,思考题,M,n,1.若在斜边界面上,受有常量的法向分布 压力 作用,试列出应力边界条件, (思考题图中(a))。2.证明在无面力作用的0A边上, 不等
14、于零(思考题图中(b))。3.证明在凸角A点附近,当无面力作用 时,其应力为零(思考题图中 (c))。,4.试导出在无面力作用时,AB边界上的 之间的关系。 (思考题图中(d)。5.试比较平面应力问题和平面应变问题的 基本方程和边界条件的异同,并进一步 说明它们的解答的异同。,弹性力学问题是微分方程的边值问题。应力,形变,位移等未知函数必须满足A内的方程和S上的边界条件。主要的困难在于难以满足边界条件。,27圣维南原理及其应用,圣维南原理可用于简化小边界上的应力边界条件。,如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对同一点的主矩也相同),那么,近处的应力分量
15、将有显著的改变,但 远处所受的影响可以不计。,圣维南原理,圣维南原理:,圣维南原理,1.圣维南原理只能应用于一小部分边界 (小边界,次要边界或局部边界);,圣维南原理的说明:,4.远处 指“近处”之外。,3.近处 指面力变换范围的一,二倍 的局部区域;,2.静力等效 指两者主矢量相同,对 同一点主矩也相同;,圣维南原理,圣维南原理表明,在小边界上进行面力的静力等效变换后,只影响近处(局部区域)的应力,对绝大部分弹性体区域的应力没有明显影响。,圣维南原理推广:如果物体一小部分边界上的面力是一个平衡力系(主矢量及主矩都等于零),那么,这个面力就只会使近处产生显著的应力,而远处的应力可以不计。,例1
16、比较下列问题的应力解答:,b,例2比较下列问题的应力解答:,推广,圣维南原理的应用:1.推广解答的应用;2.简化小边界上的边界条件。,应用,圣维南原理在小边界上的应用:, 精确的应力边界条件,如图,考虑 小边界,,上式是函数方程,要求在边界上任一点,应力与面力数值相等,方向一致,往往难以满足。,(a),在边界 上,,在小边界x=l上,用下列条件代替式(a)的条件: 在同一边界 x=l 上, 应力的主矢量 = 面力的主矢量(给定); 应力的主矩(M) = 面力的主矩(给定).,数值相等,方向一致.,(b),圣维南原理的应用积分的应力边界条件,右端面力的主矢量,主矩的数值及方向,均已给定;,左端应
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 弹性力学 ppt课件 弹性 力学 ppt 课件
链接地址:https://www.31ppt.com/p-1920776.html