细胞生物学 细胞 4章ppt课件.ppt
《细胞生物学 细胞 4章ppt课件.ppt》由会员分享,可在线阅读,更多相关《细胞生物学 细胞 4章ppt课件.ppt(61页珍藏版)》请在三一办公上搜索。
1、医学细胞生物学第四章 细胞膜与物质的跨膜运输,高级讲师 王波bonnie_ 中山大学 中山医学院 生物教研室,细胞膜的化学组成与分子结构,细胞膜的成分:脂类、蛋白质、糖类脂类与蛋白质所占比例: 1:44:1;功能复杂的膜,蛋白质比例高细胞膜的化学组成膜脂构成细胞膜的基本骨架细胞膜的脂类膜脂,细胞膜的脂类膜脂,约占50%,主要分为三个类型:磷脂(phospholipid)、胆固醇(cholesterol)、糖脂(glycolipid)1.磷脂构成膜脂的基本成分磷脂占整个膜脂50%以上,分为两类:甘油磷脂 和 鞘磷脂甘油磷脂:磷脂酰胆碱(卵磷脂PC)、磷脂酰乙醇胺(脑磷脂PE)、磷脂酰丝氨酸(PS
2、) 、磷脂酰肌醇(PI)甘油磷脂的共同特征:甘油分子的1、2位羟基分别与脂肪酸形成酯键;3位羟基与磷酸形成酯键,磷酸基团结合 胆碱、乙醇胺、丝氨酸、肌醇,脂肪酸链长短不一,通常1424个碳原子,一条脂肪酸链不含双键,另一条含有一个或几个双键,形成30弯曲,细胞膜的化学组成与分子结构,磷脂酰乙醇胺,磷脂酰丝氨酸,磷脂酰胆碱,鞘磷脂,磷脂酰肌醇,细胞膜的化学组成与分子结构,磷脂酰胆碱,鞘磷脂(sphingomyelin,SM) 是细胞膜上唯一不以甘油为骨架的磷脂,在膜中含量较少,在神经元细胞膜中含量较多鞘磷脂以鞘氨醇代替甘油,鞘氨醇的氨基结合不饱和脂肪酸链鞘磷脂的代谢产物 神经酰胺、鞘氨醇、1-磷
3、酸鞘氨醇 参与细胞活动;神经酰胺 是第二信使、 1-磷酸鞘氨醇 在细胞外通过 G蛋白偶联受体起作用,在细胞内与靶蛋白作用2.胆固醇能够稳定膜和调节膜流动性胆固醇分子较小,散布在磷脂分子之间;动物细胞胆固醇含量高,在有的膜内胆固醇与磷脂之比达1:1;植物细胞膜中含胆固醇极少胆固醇极性头部为羟基团,紧靠磷脂极性头部;非极性疏水结构为甾环和烃链,对磷脂的脂肪酸尾部的运动有干扰作用胆固醇分子 调节膜的流动性和加强膜的稳定性,没有胆固醇,细胞膜会解体,细胞膜的化学组成与分子结构,细胞膜的化学组成与分子结构,3.糖脂主要位于质膜的非胞质面糖脂含量占膜脂总量5%以下,遍布原核、真核细胞表面细菌和植物的糖脂
4、均是 甘油磷脂衍生物,一般是 磷脂酰胆碱 衍生来动物糖脂 都是 鞘氨醇衍生物,称为 鞘糖脂,糖基取代磷脂酰胆碱,成为极性头部已发现40多种糖脂,区别在于 极性头部不同,由1至几个糖残基构成,细胞膜的化学组成与分子结构,最简单的糖脂是 脑苷脂,极性头部只是一个半乳糖/葡萄糖 残基最复杂的糖脂是 神经节苷脂,极性头部有七个糖残基;在神经细胞膜中最丰富,占总膜脂5%10%,细胞膜的化学组成与分子结构,膜蛋白执行细胞膜的多种重要功能膜蛋白:转运蛋白、酶、连接蛋白、受体蛋白膜蛋白含量:轴突髓鞘25%、线粒体内膜75%、大多膜 50%(蛋白质分子数:脂类分子数=1:50)根据膜蛋白与脂双层结合方式,分为三
5、类:内在膜蛋白、外在膜蛋白、脂锚定蛋白,细胞膜的化学组成与分子结构,3.-sheet barrel,5.共价连接脂肪酸链,6.连接寡糖链锚定细胞外表面,7.8.非共价连接其他膜蛋白,1.内在膜蛋白又称 跨膜蛋白,占膜蛋白总量70%80%;分 单次跨膜、多次跨膜、多亚基跨膜 三种类型跨膜区域 2030个 疏水氨基酸残基,通常N端在细胞外侧内在膜蛋白 跨膜结构域 与膜脂结合区域,作用方式:疏水氨基酸形成-螺旋,跨膜并与脂双层脂肪酸链通过范德华力相互作用某些-螺旋外侧非极性,内侧是极性链,形成特异性畸形分子的跨膜通道多数跨膜区域是-螺旋,也有以-折叠片多次穿膜形成筒状结构,称-筒,如 孔蛋白(por
6、in)2.外在膜蛋白又称 外周蛋白,占膜蛋白总量20%30%;完全在脂双层之外,胞质侧或胞外侧,通过 非共价键 附着膜脂或膜蛋白,细胞膜的化学组成与分子结构,胞质侧的 外周蛋白形成 纤维网络,为膜提供机械支持,也连接 整合蛋白,如 红细胞的 血影蛋白 和锚蛋白外周蛋白为水溶性蛋白,与膜结合较弱,改变溶液 离子浓度或pH,可分离它们 而不破坏膜结构3.脂锚定蛋白又称 脂连接蛋白,位于膜的两侧,以共价键 结合于 脂类分子;此种锚定方式 与细胞恶变有关还有 糖基磷脂酰肌醇锚定蛋白(GPI),通过蛋白质C端 与磷脂酰肌醇连接的 寡糖链 共价结合脂锚定蛋白 在膜上 运动性增大,有利于结合更多蛋白,有利于
7、更快地与 胞外蛋白 结合、反应GPI-锚定蛋白 分布极广,100种以上,如 多种水解酶、免疫球蛋白、细胞黏附分子、膜受体等,细胞膜的化学组成与分子结构,研究膜蛋白功能,可用去垢剂将膜蛋白分离出来;如 离子型去垢剂:十二烷基磺酸钠(SDS)(引起蛋白质变性);非离子去垢剂:Triton X-100(对蛋白质比较温和),细胞膜的化学组成与分子结构,膜糖类覆盖细胞膜表面细胞膜的糖类,占质膜重量2%10%;大多以 低聚糖或多聚糖 共价 结合膜蛋白,形成 糖蛋白;或以 低聚糖 共价结合 膜脂,形成糖脂所有糖链 朝向 细胞外表面形成 低聚糖 的单糖类型:半乳糖、甘露糖、岩藻糖、半乳糖胺、葡萄糖、葡萄糖胺、
8、唾液酸 等唾液酸残基 在糖链末端,形成 细胞外表面 净负电荷糖蛋白和糖脂中 低聚糖 侧链功能:可能帮助蛋白质膜上定位、固定,防止翻转;参与细胞与外环境的作用,细胞膜的化学组成与分子结构,ABO血型抗原,细胞膜的化学组成与分子结构,细胞膜的特性脂双层与蛋白质围成屏障,还执行 物质运输、信号转导、细胞识别、能量转化 等功能膜的不对称性决定膜功能的方向性1.膜脂的不对称性脂双层的膜脂分布不对称,在含量、 比例上有差异,细胞膜的化学组成与分子结构,SM:鞘磷脂;PC:磷脂酰胆碱; PS:磷脂酰丝氨酸;PE:磷脂酰乙醇胺;PI:磷脂酰肌醇;CL:二磷脂酰甘油,不同膜性细胞器的脂质组成不同:质膜:鞘磷脂、
9、磷脂酰胆碱、胆固醇 等核膜、内质网膜、线粒体外膜:磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰肌醇线粒体内膜:心磷脂2.膜蛋白的不对称性各种膜蛋白在质膜中有特定位置,分布绝对不对称酶和受体多分布于质膜的外侧面,而 腺苷酸环化酶 定位内侧面3.膜糖的不对称性糖脂、糖蛋白的寡糖链 只分布于 质膜外表面(远离细胞质);而内膜系统的 寡糖链 只分布于 膜腔内表面(远离细胞质),细胞膜的化学组成与分子结构,不同脂双层区域,膜组分分布不均一 ;比如 功能微区“脂筏”,富含 鞘磷脂 和 胆固醇,和特定种类 膜蛋白,参与 细胞内吞、囊泡运输、信号转导等,脂筏周围磷脂富含不饱和脂肪酸,流动性高膜组分分布不对称的意义:各组分
10、 分布不对称 跟 膜功能不对称、膜的方向性有关膜的流动性是膜功能活动的保证膜的流动性 主要是 膜脂流动性、膜蛋白的运动性1.膜脂双分子层是二维流体细胞内外的水环境 使膜脂分子不能从脂双层逸出,只能在二维平面交互位置脂双分子层既有有序的固定性,又有液体的流动性液晶态正常体温下,膜呈液晶态;当温度下降到 临界温度(膜的相变温度),膜脂转为 晶态,细胞膜的化学组成与分子结构,2.膜脂分子能进行多种运动在相变温度以上,膜脂分子可进行如下5种运动:侧向扩散运动:脂质分子间 交换位置;107次/秒;主要运动方式翻转运动:从脂双层一层翻转到另一层,需要 翻转酶,在内质网发生旋转运动:膜脂分子 自旋运动伸缩振
11、荡运动:脂肪酸链伸缩最快,甘油骨架次之,亲水头部最慢,显示膜的流动梯度,细胞膜的化学组成与分子结构,烃链的旋转异构运动:烃链沿C-C自由旋转,产生 旋转异构体;低温时,烃链呈 反式构象;温度升高,歪扭构象增多,烃链流动性高烃链中各-CH2-之间的 构象转换,是膜流动性的基础,3.多种因素影响膜脂的流动性脂肪酸链的饱和程度:饱和脂肪酸链 排列紧密,流动性小,相变温度高;不饱和脂肪酸 则反之温度下降时,细胞的 饱和酶 催化单键去饱和为双键,产生含两个不饱和脂肪酸链的磷脂分子,增强膜的流动性脂肪酸链的长短:脂肪酸链短,相互作用弱,流动性大,相变温度低;脂肪酸链长 则反之胆固醇的双重调节作用:相变温度
12、以上时,胆固醇的固醇环结合部分烃链,限制膜的流动性;相变温度以下时,胆固醇隔开磷脂分子,干扰晶态形成,防止低温时膜流动性的突然降低卵磷脂与鞘磷脂的比值:哺乳类,卵磷脂+鞘磷脂 占膜脂50%;卵磷脂 不饱和程度高,流动性大;而鞘磷脂相反随着衰老,细胞膜中 卵磷脂与鞘磷脂的比值 下降,流动性也随之下降,细胞膜的化学组成与分子结构,相变温度以上,相变温度以下,细胞膜的化学组成与分子结构,膜蛋白的影响:膜蛋白插入脂双层,使周围膜脂分子不能活动,嵌入蛋白越多,膜脂流动性越差此外,膜脂的极性基团、环境温度、pH、离子强度、金属离子 等 可影响膜脂的流动性4.膜蛋白的运动性,细胞膜的化学组成与分子结构,侧向
13、扩散:人鼠杂交细胞表面抗原分布变化 可证明旋转运动:速度 比侧向扩散 慢;不同膜蛋白速度不同,有些膜蛋白无法运动;膜蛋白周围脂质的流动性影响膜蛋白的流动性膜蛋白的运动 不需要消耗能量,膜流动性的意义:生物膜的各种功能都是在膜的流动状态下进行的,膜的流动过低,代谢终止细胞膜的分子结构模型1890年,Ernest Overton 发现溶于脂肪的物质容易穿过膜,而非脂溶性难;1925年,从血影中抽提出磷脂,在水面上铺成单分子层,面积与血影面积之比 约为2:1片层结构模型1935年,James Danielli 和 Hugh Davson发现 细胞膜的表面张力 显著低于 油-水 界面表面张力, 推测
14、质膜中有 蛋白质;提出 “片层结构模型”(蛋白-磷脂- -蛋白 三层夹板式结构),细胞膜的化学组成与分子结构,单位膜模型1959年,J.D.Robertson 电镜观察细胞膜“两暗夹一明”单位膜单位膜模型:膜蛋白是单层肽链以折叠 通过静电作用 与磷脂极性端结合,细胞膜的化学组成与分子结构,流动镶嵌模型1972年提出,磷脂双层构成膜的连续主体;强调球形蛋白质镶嵌在脂双分子层内;膜是一种动态的、不对称的具有流动性特点的结构1975年,“晶格镶嵌模型”膜脂可逆地进行“有序(液态)”和“无序(晶态)”相变,流动性是局部的1977年,“板块镶嵌模型”流动的脂双层中 存在能独立移动 脂类板块,细胞膜的化学
15、组成与分子结构,脂筏模型脂双层中 由特殊脂质和蛋白质 组成的微区,富含 胆固醇和鞘脂类,聚集特定种类膜蛋白;此膜区 较厚,称“脂筏”,其周围富含不饱和磷脂,流动性较高脂筏的两个特点:许多蛋白聚集在脂筏内,便于相互作用;脂筏提供有利于蛋白质变构的环境,形成有效构象脂筏功能:参与信号转导、受体介导内吞作用、胆固醇代谢运输 等,细胞膜的化学组成与分子结构,细胞在生命活动中,与细胞外环境频繁物质交换,有几条不同途径膜的选择性通透和简单扩散小分子透过脂双层的速度,取决于分子的大小和它在脂质中的相对溶解度;分子量越小,脂溶性越强,通过脂双层的速率越快简单扩散(simple diffusion): 小分子的
16、热运动使分子自由地由膜一侧扩散到另一侧,前提:溶质在膜两侧有一定浓度差,溶质必须能透过膜脂溶性物质 如 醇、苯、甾类激素、O2、CO2、NO、 H2O 通过简单扩散 跨膜简单扩散 不需要 运输蛋白协助,顺浓度梯度 由高浓 度向低浓度方向扩散,不消耗能量;也称“被动扩散” passive diffusion,小分子物质的跨膜运输,膜转运蛋白介导的跨膜运输除了水和非极性小分子,绝大多数溶质 如 各种离子、葡萄糖、氨基酸、核苷酸等 都不能简单扩散穿膜转运膜中特定膜蛋白膜转运蛋白(跨膜蛋白,每种只转运一种特定类型溶质)膜转运蛋白分两类:载体蛋白、通道蛋白载体蛋白:与特定溶质结合,改变构象使溶质穿越细胞
17、膜通道蛋白:形成水溶性通道,贯穿脂双层,通道开放时,特定溶质可穿越脂双层所有通道蛋白和许多载体蛋白,转运溶质分子不消耗能量,消耗顺电化学浓度梯度的势能逆电化学浓度梯度 转运溶质,需要 载体蛋白 参与,还需要 消耗能量;这种利用代谢产生的能量进行逆浓度梯度的转运,称“主动运输”,小分子物质的跨膜运输,小分子物质的跨膜运输,离子通道高效转运各种离子各种带电离子 和亲水分子,难以直接穿膜转运,而其 高效率的 穿膜速率 是借助膜上的 通道蛋白 完成;已发现100余种通道蛋白,跨膜转运各种离子,也称“离子通道”离子通道 在膜上形成 亲水跨膜孔道,有选择地 让某些离子 通过到质膜另一侧通道蛋白的四个特点:
18、只介导 被动运输,溶质从膜的 高浓度一侧 自由扩散到 低浓度一侧离子通道 对被转运离子的大小 所带电荷 有高度选择性转运效率高,通道允许106108个特定离子/秒 通过,比最快效率的载体蛋白 高1000倍离子通道不是持续开放,有开和关 两种构象,受信号调控根据通道门控机制不同和通透离子的种类,分为三大类:,小分子物质的跨膜运输,小分子物质的跨膜运输,1.配体门控通道(ligand-gated channel)离子通道型受体,与细胞外特定配体结合,构象改变,允许某种离子快速跨膜扩散如 乙酰胆碱受体(acetylcholine receptor, nAChR): 4种5个亚单位组成,每个亚单位 由
19、1个大的跨膜N端,4段跨膜(M1M4)和1个短的C端组成受体上有两个结合位点,无Ach时,各个M2共同组成的孔道关闭,M2上的 亮氨酸残基 伸向孔内 形成纽扣结构;结合Ach后,孔区构象改变,亮氨酸残基滑出,孔道开放,膜外高浓度Na+内流,胞内高浓度K+外流,还有许多神经递质受体,如 氨基丁酸受体、甘氨酸受体、5-羟色胺受体等,都是单一肽链4次穿膜 形成亚单位,5个亚单位组成 跨膜离子通道;通透Na+、K+、Ca2+等阳离子2.电压门控通道膜两侧 跨膜电位 的改变是控制 电压门控通道 开放与关闭 直接因素此类通道蛋白分子 部分基团 对跨膜电位改变 敏感,可改变构象 打开通道,开放时间只有几毫秒
20、,随即自发关闭;主要分布在 神经元、肌细胞、腺上皮细胞 等,包括:钾通道、钙通道、钠通道、氯通道3.应力激活通道通道蛋白 应力改变构象,通道开放,离子跨膜内耳 毛细胞顶部的 听毛,受到声波振动 而弯曲,应力门控通道 开放,离子跨膜进入毛细胞,声信号传递给神经元细菌与古细菌的 应力激活通道 均为跨膜蛋白 五聚体,通透阳离子,小分子物质的跨膜运输,一些离子通道持续开放,大多数开放时间短暂,几个毫秒后 关闭;离子通道的开放、关闭 是连续相继的,以调节细胞活动离子通道 活动(神经-肌肉 接头处): 神经冲动神经末梢细胞去极化电压门控Ca2+通道开放细胞外Ca2+涌入细胞胞内 突触小泡 释放 乙酰胆碱
21、至 突触间隙释放的乙酰胆碱结合突触后膜的 乙酰胆碱受体通道开放,Na+流入肌细胞肌细胞膜 局部去极化,小分子物质的跨膜运输,肌细胞去极化诱发膜上Na+通道开放大量Na+涌入肌细胞,使整个肌细胞膜进一步去极化肌细胞膜的去极化使肌浆网上Ca2+通道开放Ca2+大量释放如胞质肌原纤维收缩,小分子物质的跨膜运输,载体蛋白介导的易化扩散非脂溶性/亲水性 小分子,如 葡萄糖、氨基酸、核苷酸、代谢物等,不能简单扩散 入膜,在载体蛋白 介导下,不消耗代谢能量,顺物质浓度梯度/电化学梯度 进行转运,称“易化扩散”易化扩散 转运特异性强,速率非常快载体蛋白 对结合的溶质 高度专一性,结合溶质分子后,载体构象变化,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 细胞生物学 细胞 4章ppt课件 ppt 课件
链接地址:https://www.31ppt.com/p-1917887.html