膜片钳技术原理及相关基本知识ppt课件.ppt
《膜片钳技术原理及相关基本知识ppt课件.ppt》由会员分享,可在线阅读,更多相关《膜片钳技术原理及相关基本知识ppt课件.ppt(109页珍藏版)》请在三一办公上搜索。
1、膜片钳技术,泰山医学院脑科研究所 2014.3,1991 Nobel基金会的颁奖评语:,膜片钳技术点燃了细胞和分子水平的生理学研究的革命之火,为细胞生理学的研究带来了一场革命性的变化,它和基因克隆技术并驾齐驱,给生命科学研究带来了巨大的前进动力。,细胞生理学:揭示细胞的生理过程,用电生理方法记录生物电活动,细胞膜的结构和离子通道:细胞膜由脂质双分子层和蛋白质组成,蛋白质又包括整合蛋白和表面蛋白。,磷脂双层的屏蔽作用,离子通道是一种特殊的膜蛋白,它横跨整个膜结构,是细胞内部与部外联系的桥梁和细胞内外物质交换的孔道,当通道开放时,细胞内外的一些无机离子如Na,k Ca 等带电离子可经通道顺浓度梯度
2、或电位梯度进行跨膜扩散,从而形成这些带电离子在膜内外的不同分布态势,这种态势和在不同状态下的动态变化是可兴奋细胞静息电位和动作电位的基础。这些无机离子通过离子通道的进出所产生的电活动是生命活动的基础,只有在此基础上才可能有腺体分泌、肌肉收缩、基因表达、新陈代谢等生命活动。离子通道结构和功能障碍决定了许多疾病的发生和发展。因此,了解离子通道的结构、功能以及结构与功能的关系对于从分子水平深入探讨某些疾病的病理生理机制、发现特异性治疗药物或措施等均具有十分重要的理论和实际意义.,Na-K 泵,K+o Na+i,离子通道 (ion channels),离子通道是细胞膜上的一种特殊整合蛋白,对某些离子(
3、K+、Na+、Ca2+等)能选择通透,其功能是细胞生物电活动的基础。 特性:通透性(permeation) 选择性(selectivity) 门控性(gating) 研究技术: 膜片钳技术和分子克隆技术,一、离子选择性(selectivity )(大小和电荷): 某一种离子只能通过与其相应的通道跨膜扩散(安静:KNa 100倍、兴奋: NaK 10-20倍);各离子通道在不同状态下,对相应离子的通透性不同。二、门控特性(Gating): 失活状态不仅是通道处于关闭状态,而且只有在经过一个额外刺激使通道从失活关闭状态进入静息关闭状态后,通道才能再度接受外界刺激而激活开放。,离子通道的特性(Cha
4、racteristic of Ion Channels),离子通道的功能(Function of Ion Channels),1.产生细胞生物电现象,与细胞兴奋性相关。2.神经递质的释放、腺体的分泌、肌肉的运动、学习和记忆3.维持细胞正常形态和功能完整性,膜离子通道的基因变异及功能障碍与许多疾病有关,某些先天性与后天获得性疾病是离子通道基因缺陷与功能改变的结果,称为离子通道病 (ionchannelpathies)。,配体门控通道 阳离子通道:乙酰胆碱、谷氨酸、五羟色胺受体 阴离子通道:甘氨酸和氨基丁酸受体,乙酰胆碱受体,电压门控通道:钾、钠、钙离子通道,电压门控钾离子通道,环核苷酸门控通道
5、气味分子与G蛋白偶联型受体结合,激活腺苷酸环化酶,产生cAMP,开启cAMP门控阳离子通道(cAMP-gated cation channel),引起钠离子内流,膜去极化,产生神经冲动,最终形成嗅觉或味觉。 机械门控通道 一类是牵拉活化或失活的离子通道,另一类是剪切力敏感的离子通道,前者几乎存在于所有的细胞膜,研究较多的有血管内皮细胞、心肌细胞以及内耳中的毛细胞等,后者仅发现于内皮细胞和心肌细胞 水通道 2003年诺贝尔化学奖: Pete Agre、 Roderick MacKinnon,电生理学研究简史:,二千年前,观察到电鳐鱼放电现象。1825年,Nobili发明了电流计,用其证实了肌肉有
6、电流存在。1912年,Bridge 确定了AP的“全或无”现象。同年,Oxford提出了突触的概念及反射弧的生理学研究,获1932年Nobel奖。,1937年,Hodgkin和Huxley在枪乌贼巨大神经轴突细胞内实现细胞内电记录,获1963年Nobel奖。1946年,凌宁和Gerard创造拉制出尖端直径小于1m的玻璃微电极,并记录了骨骼肌的电活动。玻璃微电极的应用使的电生理研究进行了革命性的变化。Voltage clamp(电压钳技术)由Cole和Marmont 发明,并很快由Hodgkin和Huxley完善,真正开始了定量研究,建立了HH模型(膜离子学说),是近代兴奋学说的基石。,1948
7、年,Katz利用细胞内微电极技术记录到了终板电位;1969年,又证实NM接触后的Ach以“量子式”释放,获1976年Nobel奖。1976年,德国的Neher和Sakmann发明Patch Clamp(膜片钳)。并在蛙横纹肌终板部位记录到乙酰胆碱引起的通道电流。1980年,Sigworth、 Hamill、Neher等在记录电极内施加负压吸引,得到了10100 G的高阻封接(giga seal),大大降低记录噪声,实现了单根电极既钳制膜电位又记录单通道电流。获1991年Nobel奖。,1955年,Hodgkin和Keens应用电压钳(Voltage clamp)在研究神经轴突膜对钾离子通透性时
8、发现,放射性钾跨轴突膜的运动很像是通过许多狭窄空洞的运动,并提出了“通道”的概念。1963年,描述电压门控动力学的Hodgkin-Huxley模型(简称H-H模型),荣获诺贝尔医学/生理学奖。1976年,Neher和Sakmann建立膜片钳(Patch clamp)技术。1983年10月,Single-Channel Recording一书问世,奠定了膜片钳技术的里程碑。1991年, Neher和Sakmann的膜片钳技术荣获诺贝尔医学/生理学奖。,History of Ion Channel Study,赫克斯利Andrew Fielding Huxley英国英国伦敦大学1917年-,196
9、3年诺贝尔生理学/医学奖发现了神经细胞膜的周边和中央部分与兴奋和抑制有关的离子机制,艾克尔斯Sir John Carew Eccles澳大利亚澳大利亚国家大学1903年-1997年,霍奇金Alan Lloyd Hodgkin英国英国剑桥大学1914年-1998年,离子通道结构研究:目前,绝大多数离子通道的一级结构得到了阐明,但最根本的还是要搞清楚各种离子通道的三维结构,在这方面,美国的二位科学家彼得阿格雷和罗德里克麦金农做出了一些开创性的工作,他们利用X光绕射方法得到了K离子通道的三维结构,二位因此获得2003年诺贝尔化学奖。有关离子通道结构不是本PPT的重点,可参考杨宝峰的离子通道药理学和H
10、ill的 Ionic Channels Of Excitable Membranes .,离子通道功能观察的两种技术对离子通道功能的研究,主要采用记录离子通道电流来间接反映离子通道功能,目前有如下两种技术电压钳(Voltage clamp)技术膜片钳(patch clamp)技术,电压钳技术(Voltage Clamp):电压钳技术,是20世纪初由Cole发明, Hodgkin和Huxley完善,其设计的主要目的是为了证明动作电位的产生机制,即动作电位的峰电位是由于膜对钠的通透性发生了一过性的增大过程。但当时没有直接测定膜通透性的方法,于是就用膜对某种离子的电导来代表该种离子的通透性,膜电导测
11、定的依据是电学中的欧姆定律,如膜的Na电导GNa与电化学驱动力(Em-ENa)和膜电流INa的关系GNa= INa/ (Em-ENa).因此可通过测量膜电流,再利用欧姆定律来计算膜电导,但是,利用膜电流来计算膜电导时,记录膜电流期间的膜电位必须保持不变,否则膜电流的变化就不能代表膜电导的变化。这一条件是利用电压钳技术实现的。下张幻灯中的右边两张图是Hodgkin和Huxley在半个世纪以前利用电压钳记录的抢乌贼的动作电位和动作电位过程中的膜电流的变化图,他们的实验首次证明参与动作电位的离子流由Na, k ,漏(Cl)三种成分组成。并对这些离子流进行了定量分析。这一技术对阐明动作电位的本质和离子
12、通道的的研究做出了极大的贡献。,电压钳的原理:用两根尖端直径0.5um的电极插入细胞内,一根电极用作记录电极以记录跨膜电位,用另一根电极作为电流注入电极,以固定膜电位。从而实现固定膜电位的同时记录膜电流。电位记录电极引导的膜电位(Vm)输入电压钳放大器的负输入端,而人为控制的指令电位(Vc)输入正输入端,放大器的正负输入端子等电位,向正输入端子施加指令电位(Vc)时,经过短路负端子可使膜片等电位,即Vm=Vc,从而达到电位钳制的目的,并可维持一定的时间。Vc的不同变化将导致Vm的变化,从而引起细胞膜上电压依赖性离子通道的开放,通道开放引起的离子流反过来又引起Vm的变化,致使VmVc, Vc与V
13、m的任何差值都会导致放大器有电压输出,将相反极性的电流注入细胞,以使Vc=Vm,注入电流的大小与跨膜离子流相等,但方向相反。因而注入的电流被认为是标本兴奋时的跨膜电流值(通道电流)。,电压钳的缺点:电压钳技术目前主要用于巨大细胞的全细胞电流研究,特别在分子克隆的卵母细胞表达电流的鉴定中发挥其它技术不能替代的作用。但也有其致命的弱点:1、微电极需刺破细胞膜进入细胞,以致造成细胞浆流失,破坏了细胞生理功能的完整性;2、不能测定单一通道电流。因为电压钳制的膜面积很大,包含着大量随机开放和关闭着的通道,而且背景噪音大,往往掩盖了单一通道的电流。 3、对体积小的细胞(如哺乳类中枢神经元,直径在1030m
14、之间)进行电压钳实验,技术上有更大的困难。由于电极需插入细胞,不得不将微电极的尖端做得很细,如此细的尖端致使电极阻抗很大,常常是608OM或120150M(取决于不同的充灌液)。这样大的电极阻抗不利于作细胞内电流钳或电压钳记录时在短时间(0.1s)内向细胞内注入电流,达到钳制膜电压或膜电流之目的。再者,在小细胞上插入的两根电极可产生电容而降低测量电压电极的反应能力,膜片钳技术,膜片钳技术:从一小片(约几平方微米) 膜获取电子学方面信息的技术,即保持跨膜电压恒定电压钳位,从而测量通过膜离子电流大小的技术。通过研究离子通道的离子流, 从而了解离子运输、信号传递等信息。,基本原理,利用负反馈电子线路
15、,将微电极尖端所吸附的一个至几个平方微米的细胞膜的电位固定在一定水平上,对通过通道的微小离子电流作动态或静态观察,从而研究其功能。,膜片钳(patch clamp),内尔(Neher) 萨克曼(Sakmann) (1944-) (1942-) (德国细胞生理学家) (德国细胞生理学家) 合作发明了膜片钳技术,并应用这一技术首次证实了细胞膜上存在离子通道。这一成果对于研究细胞功能的调控至关重要,可揭示神经系统、肌肉系统、心血管系统及糖尿病等多种疾病的发病机理,并提供治疗的新途径。 二人共获1991年诺贝尔奖。,膜片钳,研究离子通道的一种电生理技术,是施加负压将玻璃微电极的尖端(开口直径约1 m)
16、与细胞膜紧密接触,形成高阻抗封接,可以精确记录离子通道微小电流。能制备成细胞贴附、内面朝外和外面朝内三种单通道记录方式,以及另一种记录多通道的全细胞方式。 膜片钳技术实现了小片膜的孤立和高阻封接的形成,由于高阻封接使背景噪声水平大大降低,相对地增宽了记录频带范围,提高了分辨率。另外,它还具有良好的机械稳定性和化学绝缘性。而小片膜的孤立使对单个离子通道进行研究成为可能。,膜片钳放大器的工作模式:(1).电压钳模式:在钳制细胞膜电位的基础上改变膜电位,记录离子通道电流的变化,记录的是诸如通道电流;EPSC;IPSC等电流信号。是膜片钳的基本工作模式.(2).电流钳模式:向细胞内注入刺激电流,记录膜
17、电位对刺激电流的反应。记录的是诸如动作电位,EPSP;IPSP等电压信号。,膜片钳,为了记录到膜电位,电极尖端必须与要记录细胞的细胞膜形成紧密的封接,故又称紧密封接。电压钳位(tight-seal voltage clamp ),这种紧密封接可使电阻达到千兆欧(10 9)级,故称为“千兆欧封接”( gigaseals ),膜片钳技术实现膜电位固定的关键是在玻璃微电极尖端边缘与细胞膜之间形成高阻( 10 )密封,使电极尖端开口处相接的细胞膜片与周围环境在电学上隔离,并通过外加命令电压钳制膜电位。,膜片钳技术的优点,膜片钳技术实现了小片膜的孤立和高阻封接的形成,由于高阻封接使背景噪声水平大大降低,
18、相对地增宽了记录频带范围,提高了分辨率。另外,它还具有良好的机械稳定性和化学绝缘性。而小片膜的孤立使对单个离子通道进行研究成为可能。,膜片钳记录方法按照微电极尖端是吸住细胞膜不损伤它,还是吸出细胞膜片,或按吸出的细胞膜片是原来胞质侧还是细胞外侧暴露在浸泡液中,可将膜片钳技术分为4类, 即细胞附着膜片(cell-attached patch )、全细胞记录(whole-cell recording、外膜外向(outside-out )和内膜外向(inside-out)膜片技术。,细胞贴附式,全细胞记录式,外面向外式,内面向外式,膜片钳的几种记录模式极其形成:,各种记录模式的形成过程,a,膜片钳使
19、用的标本 1.单细胞:急性分散细胞和培养细胞2.脑片或组织块。3.整体动物。要求:膜片钳80%的工夫在于制备细胞。细胞表面要干净,不能有胶质细胞等蛋白质物质。细胞状态良好,表面光滑,无麻斑,无肿胀或皱缩。,脑片,单细胞,膜片钳记录的信息,电压钳模式,电流钳模式,1.单通道电流,1.典型的单通道电流呈一种振幅相同而持续时间不等的脉冲样变化。他有两个电导水平,即0和1,分别对应通道的关闭和开放状态。2.有的矩形脉冲簇状发放时,通道电流不在同一水平,可以明显观察到不同数目离子通道所形成的电流台阶,从而可推断出被测膜片的通道数目。3.有的通道可记录到圆滑型和方波形两种形式。4.有些通道开放活动是持续开
20、放,中间被闪动样的关闭所中断,形成burst开放。有些通道开放活动是簇状开放与短期平静交替出现,形成簇状发放串(Cluster),2. 全细胞电流,全细胞电流是一些形状各异的电流曲线,5.mEPSC,4.sEPSC、mEPSC,突触电流,3.Glu受体电流,6.神经元动作电位,膜片钳技术,一、记录设备 首先,尽可能完善膜片钳记录设备是实验前的重要步骤,如用模型细胞测定电子设备、安装并测试应用软件、调节光学显微镜、检验防震工作台等。二、微电极的制备 膜片钳电极是用外径为1-2mm的毛细玻璃管拉制成的。标准的毛细玻璃管(外经1. 5mm,管壁厚0.3mm)适合于制作单通道记录的微电极,而全细胞记录
21、则应选管壁较薄(0.16mm)的毛细玻璃管,这样可以使电极阻抗较低。,膜片钳技术,三、封接(sealing)技术 封接(seal)是膜片钳记录的关键步骤之一。封接不好噪声太大必然影响细胞膜电信号的记录,一般要求封接阻抗至少20G才可进行常规记录。为了形成良好封接必须保持清洁的溶液、良好的视野以及适当的电极镀膜。 为了获得较好的“千兆欧封接”,细胞表面必须裸露以便微电极尖端能接触细胞,细胞的大小也是成功记录的一个因素,一般选择10-20um的细胞比较理想。,膜片钳技术,全细胞膜片钳记录(whole-cell patch-clamp recording)是应用最早,也是最广的钳位技术,它相当于连续
22、的单电极电压钳位记录,也就是说全细胞记录类似于传统的细胞内记录,但它具有更大的优越性,如高分辨率、低噪声、极好的稳定性以及能控制细胞内的成分等。全细胞记录技术测定的是一个细胞内全部激活通道的电流, 记录过程中电极的溶液取代了原细胞质的成分。虽然膜片钳记录技术与最初的单电极电压钳位相比进步了很多,尤其在单离子通道钳位记录方面,细胞或脑片的组织选择及实验溶液的制备仍然是很重要的步骤。,膜片钳技术,实验溶液 浸溶细胞溶液和微电极玻璃管内的填充液成分对全细胞膜片钳记录也是很重要的内容,这关系到封接的容易程度、细胞存活状态及膜电位的状态等。 在实验记录过程中,尤其是神经生物学实验,需要迅速更换细胞浸溶液
23、浓度以免受体敏感性降低(desensitization)或需要模拟快速突触反应的寿命。原则上细胞的浸溶液成分或玻璃管内填充液成分应该与细胞外或细胞内间质的成分相似,实际研究中,为了探讨某些通道或电位特性,对这些实验溶液的成分或浓度会作必要调整,没有哪种溶液是绝对理想的。,膜片钳技术的建立,1.抛光及填充好玻璃管微电极,并将它固定在电极夹持器中。2.通过一个与电极夹持器连接的导管给微电极内一个压力,一直到电极浸入记录槽溶液中。3.当电极浸没在溶液中时给电极一个测定脉冲(命令电压,如5-10ms, 10mV)读出电流,按照欧姆定律计算电阻。4.通过膜片钳放大器的控制键将微电极尖端的连接电位(jun
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 膜片 技术 原理 相关 基本知识 ppt 课件
链接地址:https://www.31ppt.com/p-1917760.html