《固定效应面板数据模型ppt课件.ppt》由会员分享,可在线阅读,更多相关《固定效应面板数据模型ppt课件.ppt(70页珍藏版)》请在三一办公上搜索。
1、6.3 固定效应面板数据计量经济学模型,一、面板数据模型概述二、模型的设定检验三、固定效应变截距模型四、固定效应变系数模型,说明,面板数据(Panel Data)也被翻译为平行数据、综列数据、时空数据指在时间序列上取多个截面,在每个截面上同时选取相同的个体作为样本,由这些样本观测值所构成的数据。,面板数据计量经济学模型近20多年来计量经济学模型理论方法的重要发展之一;已经形成了与截面数据模型相对应的完整的模型体系;具有很好的应用价值。本节将它作为经典截面数据的一种扩展,介绍最简单、常用的固定效应面板数据模型(Panel Data Models with Fixed-Effects)。,面板数据
2、模型的发展20世纪60年代将Panel Data引入计量经济学模型,只是将面板数据作为一组混合数据(Pooled Data)样本用以估计经典的计量经济学模型。面板数据模型理论方法的发展和应用研究的开展主要发生在20世纪80-90年代。进入21世纪,Panel Data模型理论方法研究已经成为理论计量经济学最活跃的领域。目前,Panel Data模型已经成为应用最为广泛的计量经济学模型。,一般教科书包含的内容对Panel Data计量经济学模型进行总的概述,并讨论模型设定检验的原理和方法;介绍变截距Panel Data模型;介绍变系数Panel Data模型;介绍动态Panel Data模型。,
3、Panel Data计量经济学理论研究前沿领域Panel Data非线性模型研究,或者称为Panel Data非经典计量经济学模型研究。例如Panel Data离散选择模型、Panel Data计数数据模型、Panel Data选择性样本模型等。Panel Data单位根和协整检验理论方法研究。,一、面板数据模型概述,1、经济分析中的Panel Data问题,只利用截面数据或者只利用时间序列数据不能满足分析目的的需要。 例如,如果分析生产成本问题 例如,分析外商直接投资对我国各个地区经济增长的影响,2、计量经济学模型方法中的Panel Data问题,充分利用尽可能多的样本信息,是任何一项计量经
4、济学应用研究必须遵循的基本原则。计量经济学模型方法的核心是依据样本信息估计总体参数.采用Panel Data比单纯采用横截面数据或时间序列数据会使得模型分析更加有效.Panel Data计量经济学模型理论正是基于样本信息的充分利用而发展的。,在具体模型方法方面,采用Panel Data比单纯采用横截面数据或时间序列数据也有许多优势。可以显著地增加自由度,使得统计推断更加有效;可以降低变量之间的共线性,使得参数估计量更具有效性;可以有助于从不同的经济理论出发建立的互相竞争的模型中识别出正确的模型;可以减少甚至消除模型估计偏差;等等。, 经典面板数据模型的类型,说明仅指经典面板数据模型。每种模型都
5、包括固定效应和随机效应两种设定形式。,模型1:截面个体变系数模型,简称变系数模型。,该模型表示,在横截面个体之间,存在个体影响(变截距),也存在变化的经济结构,因而结构参数在不同横截面个体上是不同的。,模型2:截面个体变截距模型,简称变截距模型 。,该模型表示,在横截面个体之间,存在个体影响(变截距),不存在变化的经济结构,因而结构参数在不同横截面个体上是相同的。,模型3:截面个体截距、系数不变模型。,该模型表示,在横截面个体之间,不存在个体影响(变截距),也不存在变化的经济结构,因而模型的截距和结构参数在不同横截面个体上是相同的。,模型4:截面个体不变截距、变系数模型。,该模型表示,在横截面
6、个体之间,不存在个体影响,但是存在变化的经济结构,因而模型截距相同,而结构参数在不同横截面个体上是不同的。该模型在实际应用中很少出现,从经济行为方面看,如果在不同横截面个体上结构参数存在差异,那么模型截距一般肯定也存在差异。,模型5:时点变系数模型。,该模型表示,在不同的时点之间,存在个体影响(变截距),也存在变化的经济结构,因而结构参数在不同时点是不同的。该模型在实际应用中也很少出现,从经济行为方面看,不同个体之间的行为差异往往比同一个个体在不同时点上的行为差异更为明显。,模型6:截面个体和时点变截距模型。,该模型表示,在横截面个体之间,存在个体影响,同时在不同的时点之间,存在个体影响,但是
7、不存在变化的经济结构,因而结构参数在不同横截面个体上是相同的。,这是一类在实际应用中常见的模型。从应用的角度,人们希望既控制截面个体影响,也控制时点影响,然后求得平均意义上的不变的结构参数。,该模型的估计方法与模型2并无大的差别。,三、经典面板数据模型的设定检验,1、模型设定检验的目的,采用Panel Data由于可以构造比单独采用横截面数据或时间序列数据更现实的结构模型,计量经济学的经验研究大大地丰富了。但Panel Data包括两维的数据(横截面和时间),如果模型设定不正确,将造成较大的偏差,估计结果与实际将相差甚远。所以,在建立Panel Data模型时必须控制不可观察的个体和(或)时间
8、的特征以避免模型设定的偏差并改进参数估计的有效性。,Panel Data是来自经济活动的复杂过程。若假设经济变量在每个时点上都是由参数化的概率分布函数生成的,实际上是不现实的。忽视这种在横截面或时间上参数的本质上的差异可能会导致参数估计不是一致估计或估计出的参数值无意义。,建立Panel Data模型的第一步是检验刻画被解释变量Y的参数是否在所有横截面个体上和时间上都是常数,即检验所研究的问题属于上述模型1、2、3中的哪一种,以确定模型的形式。,2、F检验,经典模型中的约束检验:,假设1:斜率在不同的横截面样本点上和时间上都相同,但截距不相同。(模型2) 假设2:截距和斜率在不同的横截面样本点
9、和时间上都相同。(模型3) 首先检验假设2。如果接收了假设2,则没有必要进行进一步的检验。如果拒绝了假设2,就应该检验假设1,判断是否斜率都相等。如果假设1被拒绝,就应该采用模型1。,检验假设2的F统计量,从直观上看,如S3S1很小,F2则很小,低于临界值,接受H2。 S3为截距、系数都不变的模型的残差平方和,S1为截距、系数都变化的模型的残差平方和。,检验假设1的F统计量,从直观上看,如S2S1很小,F1则很小,低于临界值,接受H1。 S2为截距变化、系数不变的模型的残差平方和,S1为截距、系数都变化的模型的残差平方和。,3、说明,存在问题Panel Data模型的设定检验是建立Panel
10、Data应用模型的第一步和不可缺少的步骤,但是在实际应用研究中,研究者经常根据研究目的的需要设定模型类型,这是目前Panel Data模型应用研究中存在的一个突出问题。例如,某经济研究类学术刊物2011年第1-6期共刊载研究论文68篇,其中采用Panel Data的应用研究论文25篇,可见Panel Data模型应用研究之广泛。在25篇论文中,13篇采用截面个体和时点变截距模型(模型6),6篇采用截面个体变截距模型(模型2),5篇采用截面个体截距、系数不变模型(模型3),1篇采用截面个体变系数模型(模型1),而且几乎全部没有进行严格的模型设定检验。,一种解释采用面板数据,从应用的角度,人们经常
11、希望在控制截面个体影响,或者既控制截面个体影响也控制时点影响的情况下,求得平均意义上的不变的结构参数,分析变量之间的结构关系,所以将模型设定为模型6或者模型2的形式,能够达到研究的目的。,三、固定效应变截距模型,截面个体变截距Panel Data模型又分固定效应(Fixed-Effects)和随机效应(Random-Effects)两类。前者指模型的截距对于不同的截面个体存在实质上的差异;后者指模型的截距对于不同的截面个体只存在随机扰动的差异。,1、LSDV模型及其参数估计,T阶向量,(Tn)阶向量,该模型通常被称为最小二乘虚拟变量(LSDV)模型。如果n充分小,此模型可以当作具有(n+K)个
12、参数的多元回归,参数可由普通最小二乘进行估计。,当n很大,甚至成千上万,OLS计算可能超过任何计算机的存储容量。可用分块回归的方法进行计算。分块回归的思路是:首先设法消去参数i,估计参数;然后再在每个截面个体上利用变量的观测值和参数的估计值,计算参数i的估计量。,分块估计,ee=T,的协方差估计是无偏的,且当n或T趋于无穷大时,为一致估计。它的协方差阵为:,截距的估计是无偏估计,且仅当T趋于无穷大时为一致估计。,随机项方差估计量,2、演示:在Eviews中建立Panel Data数据文件以及估计固定效应变截距模型,以我国城镇居民家庭人均年消费支出(XF)为被解释变量,以城镇居民家庭人均年可支配
13、收入(SR)(其它因素经过检验表明不显著)为解释变量。采用北京、天津、河北、内蒙古、辽宁、吉林、上海、江苏、浙江、福建、山东、河南、湖北、湖南、广东、重庆、四川、云南、陕西、甘肃等20个地区20042013年共200组数据为样本,估计我国城镇居民消费模型。,城镇居民家庭人均年消费性支出,城镇居民家庭人均年可支配收入,打开Eviews,建立新工作文件,输入Panel Data的起止时间(2004、2013),选择建立新的数据文件,数据类型选择(Pool)和命名(jmxf),输入截面个体名称(BJ、TJ、HB、NM、),选择Sheet,输入变量名(xf?、sr?),出现数据表,输入数据、显示数据,
14、估计固定效应变截距模型(不控制时点效应),选择Estimate命令,进行估计,输出,结果,估计固定效应变截距模型(同时控制时点效应),结果分析在各地区城镇居民收入的消费倾向相同的假设下,各地区除收入水平外的其它因素对居民实际消费水平具有不同的影响。经济、社会发展水平比较高的地区,城镇居民的实际消费水平高于与其收入水平相应的平均水平。反之,经济、社会发展水平比较低的地区,城镇居民的实际消费水平低于与其收入水平相应的平均水平。不同年份除收入水平外的其它因素对居民实际消费水平也具有不同的影响。很明显,从2004年到2013年,由于社会保障体系不断完善,消费市场不断发展,国内外消费环境不断改善,城镇居
15、民消费的时点效应由负到正,由低到高,呈现了有规律的变化。仅从两个模型计算的残差平方和的比较看,同时控制截面个体效应和时点效应的固定效应变截距模型具有更好的拟合效果。,四、固定效应变系数模型,截面个体变系数Panel Data模型固定效应(Fixed-Effects):模型的结构系数对于不同的截面个体存在实质上的差异。随机效应(Random-Effects) :模型的结构系数对于不同的截面个体只存在随机扰动的差异。,1、实际经济分析中的变系数问题,线性模型中,系数表示边际倾向(对于直接线性模型)或者弹性(对于对数线性模型),而它们相对于不同的截面个体经常是不同的。例如:不同地区收入的边际消费倾向
16、不同。不同地区FDI的边际效益不同。不同家庭的边际储蓄倾向不同。而它们在各自的时间序列中一般是相同的。从客观描述经济行为的角度,变系数Panel Data模型具有很好的适用性。,2、模型表达,将截距项也看成是一个观测值始终为1的虚变量的系数。,3、关于变系数模型很少被采用的一点说明,正确的思路是首先进行模型设定检验,然后根据检验结论建立相应的模型。 但是,从计量经济学模型应用的角度,由于变系数Panel Data模型的结构参数是随截面个体变化的,带来了应用的局限。人们更希望在控制截面个体影响(有时包含时点影响)的情况下,得到各个截面个体在“平均”意义上的结构参数。由于Panel Data模型的
17、截面个体数目很大,变系数模型存在应用的技术困难。,4、截面个体不相关的模型估计,显然,如果随机干扰项在不同横截面个体之间不相关,上述模型的参数估计极为简单,即以每个截面个体的时间序列数据为样本,采用经典单方程模型的估计方法分别估计其参数。即使采用GLS估计同时得到的GLS估计量,也是与在每个横截面个体上的经典单方程估计一样。条件:,这里可以将模型看成一个由n个方程组成的联立方程模型,由于方程之间不存在相关性,分别估计每个方程并没有信息损失。即使采用系统估计方法同时估计所有方程的参数,与单方程估计是等价的,因为没有增加任何信息。,附带回答一个问题:建立Panel Data模型时需要多长的时间序列
18、样本?显然,时间序列样本的长度至少应该使得这里的参数估计有效。如果时间序列样本太短,例如在应用研究出现的3年、4年的情况,那么截面个体变系数Panel Data模型无法有效估计,模型设定检验将无法进行,Panel Data模型的理论方法将无法实现。这种情况下,只能将样本看成一组混合数据(Pooled Dat),而不是真正意义的Panel Data。,5、截面个体相关的模型估计,如果随机项在不同横截面个体之间的协方差不为零,GLS估计比每个横截面个体上的经典单方程估计更有效。联立方程模型方程之间相关性信息的利用。参数的GLS估计为:,如何得到协方差矩阵的估计量?模型随机项在不同横截面个体之间相关
19、,称为空间相关。关于空间相关性的描述,远比时间序列相关性复杂得多。例如,如果时间序列存在一阶相关,可以相关系数是相同的。而对于截面序列,如果存在一阶相关,从经济行为分析出发,就不能认为相关系数是相同的。关于随机项协方差矩阵的构造,有许多专门的研究。一种可行的简单方法是:首先采用经典单方程模型的估计方法分别估计每个横截面个体的系数,计算残差估计值,以此构造随机项协方差矩阵的估计量,类似于经典单方程模型的GLS那样。,6、例题,模型设定检验:分别估计固定效应变系数模型、固定效应变截距模型和截距系数不变模型,计算得到:,该面板数据问题在1%的显著性水平下拒绝截距系数不变模型;同时,该面板数据问题也在1%的显著性水平下拒绝变截距模型。应该采用固定效应变系数模型形式,估计我国城镇居民消费面板数据模型。,进一步分析发现,在同一个时点上,存在一些共同的因素,对每个地区城镇居民消费都产生影响。例如宏观经济形势与政策、国内外的消费环境等。这就使得不同地区模型的随机项之间具有相关性,并不完全独立。于是,采用广义最小二乘法估计固定效应变系数模型比普通最小二乘法估计更有效。,选择,输出,结果,
链接地址:https://www.31ppt.com/p-1904263.html