工具变量(IV):估计与检验ppt课件.ppt
《工具变量(IV):估计与检验ppt课件.ppt》由会员分享,可在线阅读,更多相关《工具变量(IV):估计与检验ppt课件.ppt(140页珍藏版)》请在三一办公上搜索。
1、工具变量回归,由来估计矩估计(不好)2SLS (最常用)GMM(异方差自相关);LIML(若IV)工具变量有效性检验相关性F检验; Partial R2,单内生解释变量Minimum eigenvalue statistic,最小特征值统计量,用于多内生解释变量外生性过度识别约束检验 J统计量(又称Sargan 统计量),解释变量内生性检验Hausman 检验寻找工具变量的方法:几个实例方法例子,由来,经典假设 所有的解释变量Xi与随机误差项彼此之间不相关。若解释变量Xi和ui相关,则OLS估计量是非一致的,也就是即使当样本容量很大时,OLS估计量也不会接近回归系数的真值。,造成误差项与回归变
2、量相关(内生性)的原因很多,但我们主要考虑如下几个方面:遗漏变量变量变量有测量误差双向因果关系。,遗漏变量偏差可采用在多元回归中加入遗漏变量的方法加以解决,但前提是只有当你有遗漏变量数据时上述方法才可行。双向因果关系偏差是指如果有时因果关系是从X到Y又从Y到X时,此时仅用多元回归无法消除这一偏差。同样,变量有测量误差也无法用我们前面学过的方法解决。因此我们就必须寻找一种新的方法。,工具变量(instrumental variable, IV)回归是当回归变量X与误差项u相关时获得总体回归方程未知系数一致估计量的一般方法。我们经常称其为IV估计。其基本思想是:假设方程是:,我们假设ui与Xi相关
3、,则OLS估计量一定是有偏的和非一致的。工具变量估计是利用另一个“工具”变量Z将Xi分离成与ui相关和不相关的两部分。,在经济学中:(1)内生变量:由模型内的变量所决定的变量称作内生变量。(2)外生变量:由模型外的变量所决定的变量称作外生变量。,重要概念:内生变量和外生变量,在计量经济学中,把所有与扰动项相关的解释变量都称为“内生变量”。这与一般经济学理论中的定义有所不同。1。与误差项相关的变量称为内生变量(endogenous variable)。2。与误差项不相关的变量称为外生变量(exogenous variable)。,我们的工作就是要寻找相应的工具变量将解释变量分解成内生变量和外生变
4、量,然后利用两阶段最小二乘法(TSLS)进行估计。一个例子:考虑货币政策对宏观经济的影响。由于货币政策的制定者会根据宏观经济的运行情况来调整货币政策,故货币政策是个内生变量(双向因果关系)。Romer (2004)通过阅读历史文献将货币政策的变动分解为“内生”(对经济的反应)与“外生”(货币当局的自主调整)的两部分。,谁开创了工具变量回归?,1928年的著作的“The Tariff on Animal and Vegetable Oils”的附录B。作者是谁?Philip Wright 还是他的儿子Sewall Wright文体计量学的分析,为什么IV回归是有效的?,例1: Philip Wr
5、ight的问题Philip Wright关心的是那个时期的一个重要经济问题:即如何对诸如黄油,大豆油这样的动植物油和食用动物设置进口关税。在20世纪20年代,进口关税是美国主要的税收收入来源。而理解关税的经济效应的关键在于要有商品需求和供给曲线的定量估计。由前知供给弹性为价格上涨1%引起的供给量变化的百分率,而需求弹性为价格上涨1%引起的需求量的百分率变化。,例如具休考虑黄油的需求弹性估计问题:,根据11个均衡样本点估计的方程究竟是需求函数还是供给函数?两者都不是。由于这些点是由需求和供给两者的变化确定的,因此用OLS拟合这些点的直线既不是需求曲线也不是供给曲线的估计。,利用这些样本点估计出来
6、的OLS拟合线是需求曲线还是供给曲线,都不是!两个极端的情况如图:,因此,由于这些点是由需求和供给两者的变化确定的,因此用OLS拟合这些点的直线既不是需求曲线也不是供给曲线的估计。,Wright的解决办法:1。找到第三个变量,这个变量影响供给但不影响需求。这样,所有的均衡价格和均衡量对都落在这条稳定的需求曲线上,此时很容易估计出它的斜率。2。可见,这第三个变量,也就是工具变量,它与价格相关(它使供给曲线移动,于是导致价格发生变化),但与u无关(需求曲线保持不变)。,3。Wright考虑了几个可能的工具变量;其中一个是天气。例如,某牧场的降雨量低于平均值会使牧草减少从而减少给定价格时黄油的产量(
7、会使供给曲线向左移动而使均衡价格上升),因此牧场地区降雨量满足工具变量相关性的条件。但牧场地区降雨量对黄油的需求没有直接影响,因此牧场地区降雨量与ui的相关系数为零;也就是牧场地区降雨量满足工具变量外生性条件。,上图表明若某个变量使供给曲线移动而使需求保待不变时会发生什么样的情况。现在所有的均衡价格和均衡量对都落在这条稳定的需求曲线,工具变量法的本质是联立方程,只不过,我们只关心原方程的可识别性,估计:矩估计、TSLS、GMM、LIML,GMM估计,TSLS估计量的抽样分布,为了简单起见,我们仅考虑只有一个回归变量X和一个工具变量Z的情况。,即,参数的TSLS估计量为Z和Y的样本协方差与Z和X
8、的样本协方差之比。,假设原方程为:,即总体系数为Z和Y的总体协方差与Z和X的总体协方差之比。,在香烟需求中的应用,为了减少由于吸烟导致的疾病和死亡,以及这些生病的人对社会其他成员产生的成本或外部性,一种方法是对香烟征收重税从而减少吸烟同时阻止潜在的新吸烟者。但具体需要增加多大幅度的税收来削减香烟的消费呢?例如,若要使香烟消费减少20%则香烟的税后售价应该是多少?,若需求弹性为-1,使价格上涨20%就能达到减少20%消费量的目标。若弹性为-0.5,则价格必须上涨40%才能使消费下降20%。同philip Wright对黄油的研究一样。我们无法通过数量对数关于价格对数的OLS回归得到香烟需求弹性的
9、一致估计。我们利用TSLS和1985-1995年美国48个大陆州的年度数据估计了香烟的需求弹性。,模型假定:被解释变量:香烟消费,即为州内每人购买的香烟包数。内生解释变量:包含所有税收的每包香烟的实际平均价格。工具变量:由一般销售税征收的香烟税收。,这个工具变量设定是否合理? 工具变量的相关性:由于高销售税增加了总的销售价格 ,因此每包香烟的销售税满足工具变量相关性的条件。工具变量的外生性:若销售税是外生的,则必须与需求方程中的误差无关;即销售税必然只是通过价格间接影响香烟的需求。这看上去是合理的:主要是因为不同州选择了不同的销售额、收入、财产和其他公共财政事业的混合税收,所以不同州的一般销售
10、税是不同的。其中关于公共财政的选择受到政治考量的驱使而不是受香烟需求有关的因素影响。,结论:这种工具变量的设置方法是合理的。因此我们利用两阶段最小二乘法(TSLS):第一阶段结果:第二阶段结果:,66,香烟需求 (续),67,STATA 实例: 香烟需求,第一阶段,68,第二阶段,69,结合到一个命令中,一般IV回归模型,一般IV回归模型,因变量 Yi。外生解释变量 Wi。内生解释变量 Xi。我们引入的工具变量Zi。,更为详细的说明,引入工具变量的个数,假设我们有n个内生解释变量,引入了m个工具变量,n和m的关系是什么?n=m 恰好识别 nm 不可识别 只有恰好识别和过度识别才能用IV方法估计
11、。,一般IV模型的TSLS,对一般的IV回归模型,我们需要修改工具变量的相关性和外生性条件。相关性条件:1. 当包含一个内生变量但有多个工具变量时,工具变量相关性的条件为给定W时至少有一个Z对预测X是有用的(相关的)。2. 当包含多个内生变量时,不但要排除完全多重共线性问题,而且工具变量必须提供关于这些变量外生性变动的足够信息,以分离出它们各自对Y的效应。外生性条件:工具变量外生性条件的一般叙述为每个工具变量必须与误差项ui不相关。,一般IV模型中的工具变量相关性和外生性,IV回归假设和TSLS估计量的抽样分布,基于TSLS估计量的推断,在香烟需求中的应用,在上一节中,我们基于1995年美国4
12、8个州的年消费数据利用包含一个回归变量(每包香烟的实际价格对数)和一个工具变量(每包香烟的实际销售税)的TSLS估计了香烟的需求弹性。但这个估计并非没有问题的。收入会影响需求,它是总体回归误差的一部分。若州销售税与州的收入有关,则它与香烟需求方程误差项中的某个变量相关。这违反了工具变量外生性的条件。会导致IV估计量是非一致的。因此我们需要在回归中加入收入这一变量。,除了工具变量SaleTaxi外,我们增加一个新的工具变量香烟专项税CigTaxi,香烟专项税提高了消费者支付的香烟价格,因此可证明它满足工具变量相关性的条件。同时它与州香烟需求方程中的误差项不相关,因此它是外生工具变量。,有了这个工
13、具变量后我们就有了每包香烟的实际销售税和每包香烟的实际州专项税两个工具变量。因此需求弹性是过度识别的,即工具变量的个数(m=2)大于包含的内生变量个数(k=1)。现在我们就可以利用TSLS估计需求弹性了,其中第一阶段回归中的回归变量为包含的外生变帚ln(Inci)和两个工具变量。,结果,使得标准误差变小。,85,实例: 香烟的需求,86,实例:香烟需求,一个工具,87,实例: 香烟需求, 两个工具,88,工具变量有效性检验,1.相关性:为什么弱工具变量是个问题,如果工具变量是弱的,那么即使当样本容量较大时用正态分布近似TSLS估计量的抽样分布效果仍然很差。因此即便是在大样本下仍然缺乏常用统计推
14、断方法的理论依据。事实上,如果工具变量较弱,则TSLS估计量严重偏离OLS估计量的方向。弱工具变量会使得分母变得很小,甚至为0,导致结果严重偏离。,直观上看,由于z 中仅包含很少与x 有关的信息,利用这部分信息进行的工具变量法估计就不准确,即使样本容量很大也很难收敛到真实的参数值。这种工具变量称为弱工具变量,将使_IV 的小样本性质变得很差,且基于大样本理论的统计推断失效,此外,用TSLS估计量1.96标准误差构造的95%置信区问包含系数真值的次数远小于95%,简言之,若工具变量较弱则TSLS不再是可靠的了。,F检验 (只有一个内生解释变量),当只有一个内生解释变量时检验弱工具变量的一种方法是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工具 变量 IV 估计 检验 ppt 课件
链接地址:https://www.31ppt.com/p-1902492.html