第四章金属 氧化物 半导体场效应晶体管基础ppt课件.ppt
《第四章金属 氧化物 半导体场效应晶体管基础ppt课件.ppt》由会员分享,可在线阅读,更多相关《第四章金属 氧化物 半导体场效应晶体管基础ppt课件.ppt(66页珍藏版)》请在三一办公上搜索。
1、微电子器件基础,第四章 金属-氧化物-半导体场效应晶体管基础,引言,所谓“MOS”指的仅是金属二氧化硅(SiO2)硅系统。更一般的术语是金属绝缘体半导体(MIS),其中的绝缘体不一定是二氧化硅,半导体也并非一定是硅。由于MIS系统有着类似的基本物理概念,在这一章里我们将始终讨论MOS系统。,MOSFET的基本结构,4.1 双端MOS结构,MOSFET 的核心是金属氧化物半导体电容, 其中的金属可以是铝或者一些其它的金属,但更通常的情况是在氧化物上面淀积高电导率的多晶硅;然而,金属一词通常被延用下来。,4.1.1 能带图,外加负栅压的MOS电容器的电场和电流,4.1.1 能带图,施加小的正偏栅压
2、后的MOS电容器,4.1.1 能带图,型衬底MOS电容器的能带图,4.1.1 能带图,n型衬底MOS电容器的能带图,4.1.2 耗尽层厚度,我们可以通过计算求出于氧化物半导体界面处的空间电荷区的宽度,下图所示为p型衬底半导体的空间电荷区示意图。,4.1.2 耗尽层厚度,4.1.2 耗尽层厚度,上图示意了s=2fp时的能带图。表面处的费米能级远在本征费米能级之上而半导体内的费米能级则在本征费米能级之下。表面处的电子浓度等于体内的空穴浓度,这种情况称为阈值反型点,所加的电压称为阈值电压。如果栅压大于这个阈值,导带会轻微地向费米能级弯曲,但是表面处导带的变化只是栅压的函数。然而,表面电子浓度是表面势
3、的指数函数。表面势每增加数伏特(kT/e),将使电子浓度以10的幂次方增加,但是空间电荷宽度的改变却是微弱的。在这种情况下,空间电荷区已经达到了最大值。,4.1.3 功函数差,如图所示为零偏压下完整的金属氧化物半导体结构的能带图,4.1.3 功函数差,如果我们把金属一侧的费米能级与半导体一侧的费米能级相加,可以得到:上式还可以写成其中:它称为金属半导体功函数差。,4.1.3 功函数差,掺杂多晶硅经常淀积在金属栅上,图a显示了具有n多晶硅栅和p型衬底的MOS电容的能带图。图b是p多晶硅栅和p型衬底的情况时的能带图。在掺杂多晶硅中,我们假设n的情况时EFEc,而p的情况时EFEv。,4.1.4 平
4、带电压,平带电压的定义为使半导体内没有能带弯曲时所加的栅压,此时净空间电荷为零。由于功函数差和在氧化物中可能存在的陷阱电荷,此时穿过氧化物的电压不一定为零。,4.1.4 平带电压,在前面讨论中,我们已经隐含地假定了在氧化物中的净电荷密度为零。这种假设也许不成立通常为正值的净的固定电荷密度可能存在于绝缘体之中,这些正电荷与氧化物半导体界面处破裂或虚悬的共价键有关。在SiO2的热形成过程中,氧气穿过氧化物进行扩散并且在SiSiO2 界面处反应生成SiO2,硅原子也可以脱离硅而优先形成SiO2。当氧化过程结束后,过剩的硅原子会存在于界面附近的栅氧化层中,从而导致存在虚悬的共价键。通常,氧化电荷的多少
5、大约是氧化条件的函数,诸如氧化环境和温度等。可以通过在氩气或氮气环境中对氧化物进行退火来改变这种电荷密度。,4.1.5 阈值电压,MOSFET表面呈现强反型形成导电沟道时的栅源电压,以VT表示,VOX :栅电压VG 降落在 SiO2 绝缘层上的部分VS : 栅电压VG 降落在半导体表面的部分VFB :平带电压,4.1.5 阈值电压,强反型时的电荷分布 QG:金属栅上的面电荷密度 QOX:栅绝缘层中的面电荷密度 Qn :反型层中电子电荷面密度 QB :半导体表面耗尽层中空间电荷面密度,4.1.5 阈值电压,理想状态MOSFET的阈值电压,1. 理想状态:Qox0,Vms0,2. 沟道形成时的临界
6、状态:Qn0,4. 出现强反型后:xd xdmax,4.1.5 阈值电压,理想假设条件下不考虑,刚达到强反型时Qn分布在表面很薄的一层内QnQB,单位面积栅电容,4.1.5 阈值电压,理想状态MOSFET的阈值电压,空间电荷区宽度(强反型时可视为np),4.1.5 阈值电压,理想状态MOSFET的阈值电压,单位面积栅电容,栅氧化层厚度,4.1.5 阈值电压,理想状态MOSFET的阈值电压,4.1.5 阈值电压,实际MOSFET的阈值电压(1)实际MOS结构的特点,4.1.5 阈值电压,(2)理论推导,NMOS:,PMOS:,4.1.5 阈值电压,(3)非平衡下之VT VDS0,4.1.5 阈值
7、电压,4.1.5 阈值电压,(4) 衬偏电压VBS0,4.1.5 阈值电压,影响阈值电压的因素 (1)栅电容Cox(2)接触电势(3)衬底杂质浓度的影响(4)氧化层电荷密度的影响,4.1.5 阈值电压,影响阈值电压的因素 (1)栅电容Cox选用较大介电系数的材料作栅介质膜减小氧化层厚度,4.1.5 阈值电压,(2)接触电势 尽量使得Vms=0 用硅栅工艺(用多晶硅作栅极),4.1.5 阈值电压,(3)衬底杂质浓度的影响费米势:耗尽层电荷:Vms,NMOS,PMOS,4.1.5 阈值电压,(4)氧化层电荷密度的影响,NMOS:1)NA一定时,Qox VT (+ 0 )2)当 时,NA 在1015
8、cm-3 仍是VTn 1015cm-3, 才形成EMOS所以,NMOS易形成耗尽型,4.1.5 阈值电压,PMOS:VTp始终小于0,为EMOS欲PMOS成为DPMOS,可预制一层P型预反型层或利用Al2O3膜的负电荷效应,制作Al2O3/SiO2复合栅,4.1.6 电荷分布,栅氧化层界面处的反型层电子浓度(p型衬底)为ns=(ni2/Na)exp(s/Vt)。硅在T300K时的杂质掺杂浓度为Na11016cm3,在阈值反型点的表面势为s=2p=0.695V。如我们先前讨论的那样,栅氧化层界面处的电子浓度为Ns11016cm3,下图所示为表面处电子浓度随着表面势的增加而增大的曲线。如前所述,表
9、面势的很小改变就可以使电子浓度迅速增加,从而使空间电荷宽度达到最大值。,4.1.6 电荷分布,当s2fp时,称为强反型,因为随着表面势的增加反型电荷密度迅速增大,如图所示。,4.2 电容-电压特性,MOS电容结构是MOSFET的核心。MOS器件和栅氧化层半导体界面处的大量信息可以从器件的电容电压的关系即CV特性曲线中得到。器件的电容定义为: 其中dQ为板上电荷的微分变量,它是穿过电容的电压的微分变量的函数。这时的电容是小信号或称ac变量,可通过在直流栅压上叠加一交流小信号电压的方法测量出。因此,电容是直流栅压的函数,4.2.1 理想C-V特性,MOS电容有三种工作状态:即堆积、耗尽和反型。图a
10、是加负栅压的p型衬底MOS电容的能带图,在栅氧化层半导体界面处产生了空穴累积层。一个小的电压微分改变量将导致金属栅和空穴累积电荷的微分变量发生变化,如图b所示。这种电荷密度的微分改变发生在栅氧化层的边缘,就像平行板电容器中的那样。堆积模式时MOS电容器的单位面积电容C就是栅氧化层电容,即,4.2.1 理想C-V特性,型衬底MOS电容器理想低频电容和栅压的函数关系图,4.2.1 理想C-V特性,n型衬底MOS电容器理想低频电容和栅压的函数关系图,4.2.2 频率特性,能使反型层电荷密度改变的电子的来源有两处。一处来自通过空间电荷区的p型衬底中的少子电子的扩散。此扩散过程与反偏pn结中产生反向饱和
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第四章金属 氧化物 半导体场效应晶体管基础ppt课件 第四 金属 半导体 场效应 晶体管 基础 ppt 课件

链接地址:https://www.31ppt.com/p-1875653.html